Self-focusing on bounded domains

被引:42
作者
Fibich, G [1 ]
Merle, F
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Inst Univ France, F-95302 Pontoise, Cergy Pontoise, France
[3] Univ Cergy Pontoise, F-95302 Pontoise, Cergy Pontoise, France
来源
PHYSICA D | 2001年 / 155卷 / 1-2期
关键词
nonlinear Schrodinger equation; singularity formation; waveguide; stability; collapse; blowup; hollow fiber; critical power;
D O I
10.1016/S0167-2789(01)00249-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The critical nonlinear Schrodinger equation (NLS) on bounded domains models the propagation of cw laser beams in hollow-core fibers. Unlike the NLS on unbounded domains which models propagation in bulk media, the ground-state waveguide solutions are stable and the condition of critical power for singularity formation is generically sharp. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:132 / 158
页数:27
相关论文
共 32 条
[11]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[12]   EXISTENCE OF NODAL SOLUTIONS OF SEMILINEAR EQUATIONS IN RN [J].
GRILLAKIS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (02) :367-400
[13]   Nonlinear propagation dynamics of an ultrashort pulse in a hollow waveguide [J].
Homoelle, D ;
Gaeta, AL .
OPTICS LETTERS, 2000, 25 (10) :761-763
[14]   A REMARK ON THE BLOWING-UP OF SOLUTIONS TO THE CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER-EQUATIONS [J].
KAVIAN, O .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (01) :193-203
[15]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[16]   HOLLOW METALLIC + DIELECTRIC WAVEGUIDES FOR LONG DISTANCE OPTICAL TRANSMISSION + LASERS [J].
MARCATILI, EAJ ;
SCHMELTZER, RA .
BELL SYSTEM TECHNICAL JOURNAL, 1964, 43 (4P2) :1783-+
[17]   DETERMINATION OF BLOW-UP SOLUTIONS WITH MINIMAL MASS FOR NONLINEAR SCHRODINGER-EQUATIONS WITH CRITICAL POWER [J].
MERLE, F .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :427-454
[19]   L2 CONCENTRATION OF BLOW-UP SOLUTIONS FOR THE NONLINEAR SCHRODINGER-EQUATION WITH CRITICAL POWER NONLINEARITY [J].
MERLE, F ;
TSUTSUMI, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :205-214
[20]  
Merle F., 1998, P INT C MATHEMATICIA, VIII, P57