Theory of Binet formulas for Fibonacci and Lucas p-numbers

被引:99
作者
Stakhov, A [1 ]
Rozin, B [1 ]
机构
[1] Int Club Golden Soc, Bolton, ON L7E 2C8, Canada
关键词
D O I
10.1016/j.chaos.2005.04.106
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Modern natural science requires the development of new mathematical apparatus. The generalized Fibonacci numbers or Fibonacci p-numbers (p = 0, 1, 2, 3,...), which appear in the "diagonal sums" of Pascal's triangle and are assigned in the recurrent form, are a new mathematical discovery. The purpose of the present article is to derive analytical formulas for the Fibonacci p-numbers. We show that these formulas are similar to the Binet formulas for the classical Fibonacci numbers. Moreover, in this article, there is derived one more class of the recurrent sequences, which is defined to be a generalization of the Lucas numbers (Lucas p-numbers). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1162 / 1177
页数:16
相关论文
共 34 条
[11]   ON DIMENSIONS OF CANTER SET RELATED SYSTEMS [J].
ELNASCHIE, MS .
CHAOS SOLITONS & FRACTALS, 1993, 3 (06) :675-685
[12]  
Hoggat V., 1969, Fibonacci and Lucas Numbers
[13]  
MAIBORODA AO, 2003, VINNITSA, V15, P87
[14]   RANDOM RECURSIVE CONSTRUCTIONS - ASYMPTOTIC GEOMETRIC AND TOPOLOGICAL PROPERTIES [J].
MAULDIN, RD ;
WILLIAMS, SC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 295 (01) :325-346
[15]  
PETRNENKO VV, 2003, VINNITSA, V15, P80
[16]  
ROZIN B, GOLDEN SECTION MORPH
[17]  
SOLJANICHENKO NA, 1990, HOMEL, P3
[18]  
SOROKO EM, 1984, MINSK NAUKA TEKHNIKA
[19]  
Spears CP, 1998, APPLICATIONS OF FIBONACCI NUMBERS, VOL 7, P377
[20]   On a new class of hyperbolic functions [J].
Stakhov, A ;
Rozin, B .
CHAOS SOLITONS & FRACTALS, 2005, 23 (02) :379-389