Pion light cone wave function in the nonlocal NJL model

被引:81
作者
Praszalowicz, M [1 ]
Rostworowski, A [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
来源
PHYSICAL REVIEW D | 2001年 / 64卷 / 07期
关键词
D O I
10.1103/PhysRevD.64.074003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the simple instanton motivated NJL-type model to calculate the leading twist pion light cone wave function. The model consists in employing the momentum dependent quark mass in the quark loop entering the definition of the wave function. The result is analytical up to a solution of a certain algebraic equation. Various properties including the k(T) dependence of the pion wave function are discussed. The resulting k(T) integrated wave function is not asymptotic and is in agreement with recent analysis of the CLEO data.
引用
收藏
页数:9
相关论文
共 39 条
[31]   NONLOCAL CONDENSATES AND QCD SUM-RULES FOR THE PION WAVE-FUNCTION [J].
MIKHAILOV, SV ;
RADYUSHKIN, AV .
PHYSICAL REVIEW D, 1992, 45 (05) :1754-1759
[32]   Pion and photon light-cone wave functions from the instanton vacuum [J].
Petrov, VY ;
Polyakov, AV ;
Ruskov, R ;
Weiss, C ;
Goeke, K .
PHYSICAL REVIEW D, 1999, 59 (11)
[33]  
PETROV VY, HEPPH9712203
[34]  
RIPKA G, HEPPH9910479
[35]  
ROSENHAUS VB, 1986, SOV J NUCL PHYS, V44, P829
[36]  
Schmedding A, 2000, PHYS REV D, V62, DOI 10.1103/PhysRevD.62.116002
[37]   QCD AND RESONANCE PHYSICS - THEORETICAL FOUNDATIONS [J].
SHIFMAN, MA ;
VAINSHTEIN, AI ;
ZAKHAROV, VI .
NUCLEAR PHYSICS B, 1979, 147 (05) :385-447
[38]  
Stefanis C, 2000, INT J DEV NEUROSCI, V18, P137
[39]   THE NONPERTURBATIVE WAVE-FUNCTIONS, TRANSVERSE-MOMENTUM DISTRIBUTION AND QCD VACUUM-STRUCTURE [J].
ZHITNITSKY, AR .
PHYSICS LETTERS B, 1994, 329 (04) :493-504