Many experiments are conducted in greenhouses or growth chambers in which plants are grown in pots. Considerable research has shown that pots can have a limiting effect on overall plant growth. This research was undertaken to examine the effects of pot size specifically on transpiration response of maize (Zea mays L.) and soybean (Glycine max L.) plants undergoing water-deficit stress. Maize and soybean experiments were conducted similarly, but as separate experiments, Maize plants were grown in 2.3, 4.1, 9.1, and 16.2 l pots sealed to prevent water loss except by transpiration. For each pot size, plants were divided into two watering regimes, a well-watered control and a water-deficit regime, Water deficits were imposed by simply not rewatering the pots. Soybean was examined in a similar manner, but only the three larger pot sizes were used in the experiment. For both maize and soybean, and in both watering regimes, there was a significant reduction of shoot dry weight and total transpiration with decreasing pot size. However, there were no significant differences among pot sizes in the fraction of transpirable soil water (FTSW) point at which transpiration began to decline (FTSW approximate to 0.31 for maize and approximate to 0.35 for soybean) or in the overall relationship of transpiration rate to soil water content in response to water deficits. These results indicated that, regardless of pot size or plant size, the overriding factor determining transpirational response to drought stress was soil water content.