Recent results from the HIT-SI experiment

被引:15
作者
Jarboe, T. R. [1 ]
Akcay, C. [1 ]
Chilenski, M. A. [1 ]
Ennis, D. A. [1 ]
Hansen, C. J. [1 ]
Hicks, N. K. [1 ]
Hosn, R. Z. Aboul [1 ]
Hossack, A. C. [1 ]
Marklin, G. J. [1 ]
Nelson, B. A. [1 ]
O'Neill, R. G. [1 ]
Sieck, P. E. [1 ]
Smith, R. J. [1 ]
Victor, B. S. [1 ]
Wrobel, J. S. [1 ]
Nagata, M. [2 ]
机构
[1] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[2] Univ Hyogo, Dept Elect Engn & Comp Sci, Himeji, Hyogo 6712201, Japan
关键词
CURRENT DRIVE EXPERIMENTS; INDUCTIVE HELICITY INJECTION; ROTATING MAGNETIC-FIELD; ENERGY CONFINEMENT; SPHEROMAK; TOKAMAK; SUSTAINMENT; RELAXATION; TIME;
D O I
10.1088/0029-5515/51/6/063029
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
New understanding and improved parameters have been achieved on the Helicity Injected Torus with Steady Inductive helicity injection current drive (HIT-SI) experiment. The experiment has a bowtie-shaped spheromak confinement region with two helicity injectors. The inductive injectors are 180 degrees segments of a small, oval cross section toroidal pinch. Spheromaks with currents up to 38 kA and current amplification of 2 have been achieved with only 6 MW of injector power. The Taylor-state model is shown to agree with HIT-SI surface and internal magnetic profile measurements. Helicity balance predicts the peak magnitude of toroidal spheromak current and the threshold for spheromak formation. The model also accurately predicts the division of the applied loop voltage between the injector and spheromak regions. Single injector operation shows that the two injectors have opposing, preferred spheromak current directions. An electron locking relaxation model is consistent with the preferred direction, with ion Doppler data and with bolometric data. Results from higher frequency operation are given. The impact of the new understanding on the future direction of the HIT programme is discussed.
引用
收藏
页数:15
相关论文
共 48 条
  • [11] Principal physics of rotating magnetic-field current drive of field reversed configurations
    Hoffman, AL
    Guo, HY
    Miller, KE
    Milroy, RD
    [J]. PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 16
  • [12] Hooper EB, 1996, FUSION TECHNOL, V29, P191, DOI 10.13182/FST96-A30706
  • [13] HOOPER EB, 1998, P 17 INT C FUS EN 19
  • [14] HOSN RZA, 2007, THESIS U WASHINGTON
  • [15] Energy confinement and magnetic field generation in the SSPX spheromak
    Hudson, B.
    Wood, R. D.
    McLean, H. S.
    Hooper, E. B.
    Hill, D. N.
    Jayakumar, J.
    Moller, J.
    Montez, D.
    Romero-Talamas, C. A.
    Casper, T. A.
    Johnson, J. A., III
    LoDestro, L. L.
    Mezonlin, E.
    Pearlstein, L. D.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (05)
  • [16] A NUMERICAL STUDY OF THE GENERATION OF AN AZIMUTHAL CURRENT IN A PLASMA CYLINDER USING A TRANSVERSE ROTATING MAGNETIC-FIELD
    HUGRASS, WN
    GRIMM, RC
    [J]. JOURNAL OF PLASMA PHYSICS, 1981, 26 (DEC) : 455 - 464
  • [17] INDUCTIVE SUSTAINMENT OF SPHEROMAKS
    JANOS, AC
    YAMADA, M
    [J]. FUSION TECHNOLOGY, 1986, 9 (01): : 58 - 68
  • [18] Spheromak formation by steady inductive helicity injection
    Jarboe, T. R.
    Hamp, W. T.
    Marklin, G. J.
    Nelson, B. A.
    O'Neill, R. G.
    Redd, A. J.
    Sieck, P. E.
    Smith, R. J.
    Wrobel, J. S.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (11)
  • [19] An explanation of closed-flux formation and sustainment using coaxial helicity injection on HIT-II
    Jarboe, T. R.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (04)
  • [20] PROGRESS WITH ENERGY CONFINEMENT TIME IN THE CTX SPHEROMAK
    JARBOE, TR
    WYSOCKI, FJ
    FERNANDEZ, JC
    HENINS, I
    MARKLIN, GJ
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (06): : 1342 - 1346