Src kinase activates endothelial nitric-oxide synthase by phosphorylating Tyr-83

被引:87
作者
Fulton, D
Church, JE
Ruan, L
Li, CY
Sood, SG
Kemp, BE
Jennings, IG
Venema, RC
机构
[1] Med Coll Georgia, Vasc Biol Ctr, Augusta, GA 30912 USA
[2] Med Coll Georgia, Dept Pediat, Augusta, GA 30912 USA
[3] Med Coll Georgia, Dept Pharmacol, Augusta, GA 30912 USA
[4] St Vincents Inst, Fitzroy, Vic 3065, Australia
[5] CSIRO Mol & Hlth Technol, Fitzroy, Vic 3065, Australia
关键词
D O I
10.1074/jbc.M504606200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The endothelial nitric-oxide synthase ( eNOS) is regulated in part by serine/threonine phosphorylation, but eNOS tyrosine phosphorylation is less well understood. In the present study we have examined the tyrosine phosphorylation of eNOS in bovine aortic endothelial cells (BAECs) exposed to oxidant stress. Hydrogen peroxide and pervanadate (PV) treatment stimulates eNOS tyrosine phosphorylation in BAECs. Phosphorylation is blocked by the Src kinase family inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[ 3,4-d] pyrimidine (PP2). Moreover, eNOS and c-Src can be coimmunoprecipitated from BAEC lysates by antibodies directed against either protein. Domain mapping and site-directed mutagenesis studies in COS-7 cells transfected with either eNOS alone and then treated with PV or cotransfected with eNOS and constitutively active v-Src identified Tyr-83 ( bovine sequence) as the major eNOS tyrosine phosphorylation site. Tyr-83 phosphorylation is associated with a 3-fold increase in basal NO release from cotransfected cells. Furthermore, the Y83F eNOS mutation attenuated thapsigargin-stimulated NO production. Taken together, these data indicate that Src-mediated tyrosine phosphorylation of eNOS at Tyr-83 modulates eNOS activity in endothelial cells.
引用
收藏
页码:35943 / 35952
页数:10
相关论文
共 33 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]   Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells [J].
Ayajiki, K ;
Kindermann, M ;
Hecker, M ;
Fleming, I ;
Busse, R .
CIRCULATION RESEARCH, 1996, 78 (05) :750-758
[3]   Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases [J].
Boo, YC ;
Jo, H .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2003, 285 (03) :C499-C508
[4]   NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin [J].
Cai, H ;
Li, ZM ;
Dikalov, S ;
Holland, SM ;
Hwang, JN ;
Jo, H ;
Dudley, SC ;
Harrison, DG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (50) :48311-48317
[5]   Akt-dependent phosphorylation of serine 1179 and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 cooperatively mediate activation of the endothelial nitric-oxide synthase by hydrogen peroxide [J].
Cai, H ;
Li, ZM ;
Davis, ME ;
Kanner, W ;
Harrison, DG ;
Dudley, SC .
MOLECULAR PHARMACOLOGY, 2003, 63 (02) :325-331
[6]   Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress [J].
Corson, MA ;
James, NL ;
Latta, SE ;
Nerem, RM ;
Berk, BC ;
Harrison, DG .
CIRCULATION RESEARCH, 1996, 79 (05) :984-991
[7]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[8]  
Fisslthaler B, 2000, ACTA PHYSIOL SCAND, V168, P81
[9]   Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress [J].
Fleming, I ;
Bauersachs, J ;
Fisslthaler, B ;
Busse, R .
CIRCULATION RESEARCH, 1998, 82 (06) :686-695
[10]   Phosphorylation of Thr495 regulates Ca2+/calmodulin-dependent endothelial nitric oxide synthase activity [J].
Fleming, I ;
Fisslthaler, B ;
Dimmeler, S ;
Kemp, BE ;
Busse, R .
CIRCULATION RESEARCH, 2001, 88 (11) :E68-E75