Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae

被引:143
作者
Howe, KJ
Kane, CM
Ares, M [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, RNA, Ctr Mol Biol, Santa Cruz, CA 95064 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
yeast; 6-azauracil; RPB2; exon definition; intron definition;
D O I
10.1261/rna.5390803
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Unknown mechanisms exist to ensure that exons are not skipped during biogenesis of mRNA. Studies have connected transcription elongation with regulated alternative exon inclusion. To determine whether the relative rates of transcription elongation and spliceosome assembly might play a general role in enforcing constitutive exon inclusion, we measured exon skipping for a natural two-intron gene in which the internal exon is constitutively included in the mRNA. Mutations in this gene that subtly reduce recognition of the intron 1 branchpoint cause exon skipping, indicating that rapid recognition of the first intron is important for enforcing exon inclusion. To test the role of transcription elongation, we treated cells to increase or decrease the rate of transcription elongation. Consistent with the "first come, first served" model, we found that exon skipping in vivo is inhibited when transcription is slowed by RNAP II mutants or when cells are treated with inhibitors of elongation. Expression of the elongation factor THIS stimulates exon skipping, and this effect is eliminated when lac repressor is targeted to DNA encoding the second intron. A mutation in U2 snRNA promotes exon skipping, presumably because a delay in recognition of the first intron allows elongating RNA polymerase to transcribe the downstream intron. This indicates that the relative rates of elongation and splicing are tuned so that the fidelity of exon inclusion is enhanced. These findings support a general role for kinetic coordination of transcription elongation and splicing during the transcription-dependent control of splicing.
引用
收藏
页码:993 / 1006
页数:14
相关论文
共 70 条
[1]   THE YEAST MUD2 PROTEIN - AN INTERACTION WITH PRP11 DEFINES A BRIDGE BETWEEN COMMITMENT COMPLEXES AND U2 SNRNP ADDITION [J].
ABOVICH, N ;
LIAO, XLC ;
ROSBASH, M .
GENES & DEVELOPMENT, 1994, 8 (07) :843-854
[2]   Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals [J].
Abovich, N ;
Rosbash, M .
CELL, 1997, 89 (03) :403-412
[3]   PRECISION AND ORDERLINESS IN SPLICING [J].
AEBI, M ;
WEISSMANN, C .
TRENDS IN GENETICS, 1987, 3 (04) :102-107
[4]   GENETIC INTERACTION BETWEEN TRANSCRIPTION ELONGATION-FACTOR TFIIS AND RNA POLYMERASE-II [J].
ARCHAMBAULT, J ;
LACROUTE, F ;
RUET, A ;
FRIESEN, JD .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) :4142-4152
[5]   LETHAL AND TEMPERATURE-SENSITIVE MUTATIONS AND THEIR SUPPRESSORS IDENTIFY AN ESSENTIAL STRUCTURAL ELEMENT IN U2 SMALL NUCLEAR-RNA [J].
ARES, M ;
IGEL, AH .
GENES & DEVELOPMENT, 1990, 4 (12A) :2132-2145
[6]   A handful of intron-containing genes produces the lion's share of yeast mRNA [J].
Ares, M ;
Grate, L ;
Pauling, MH .
RNA, 1999, 5 (09) :1138-1139
[7]   The mRNA assembly line: transcription and processing machines in the same factory [J].
Bentley, D .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (03) :336-342
[8]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[9]   Genomic Exploration of the Hemiascomycetous Yeasts:: 4.: The genome of Saccharomyces cerevisiae revisited [J].
Blandin, G ;
Durrens, P ;
Tekaia, F ;
Aigle, M ;
Bolotin-Fukuhara, M ;
Bon, E ;
Casarégola, S ;
de Montigny, J ;
Gaillardin, C ;
Lépingle, A ;
Llorente, B ;
Malpertuy, A ;
Neuvéglise, C ;
Ozier-Kalogeropoulos, O ;
Perrin, A ;
Potier, S ;
Souciet, JL ;
Talla, E ;
Toffano-Nioche, C ;
Wésolowski-Louvel, M ;
Marck, C ;
Dujon, B .
FEBS LETTERS, 2000, 487 (01) :31-36
[10]   Allosteric cascade of spliceosome activation [J].
Brow, DA .
ANNUAL REVIEW OF GENETICS, 2002, 36 :333-360