Ontogeny of pepsinogen and gastric proton pump expression in red porgy (Pagrus pagrus):: Determination of stomach functionality

被引:34
作者
Darias, Maria J.
Murray, Harry M.
Gallant, Jeffrey W.
Douglas, Susan E.
Yufera, Manuel
Martinez-Rodriguez, Gonzalo
机构
[1] CSIC, Inst Ciencia Mat Andalucia, Puerto Real, Spain
[2] Natl Res Council Canada, Inst Marine Biosci, Halifax, NS B3H 3Z1, Canada
关键词
red porgy; pagrus pagrus; pepsinogen; proton pump; fish larvae; gene expression; HALIBUT HIPPOGLOSSUS-HIPPOGLOSSUS; WINTER FLOUNDER; ATLANTIC HALIBUT; LARVAE; PH; TELEOSTEI; TURBOT; GENES; TRACT; CELLS;
D O I
10.1016/j.aquaculture.2007.04.045
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
The appearance of functionally developed gastric glands is commonly considered as the transition from the larval to the juvenile stage in fish, since it means the switch from the less efficient alkaline digestion to a more efficient acid digestion characteristic of adult specimens. From that moment, fish are supposedly able to better assimilate nutrients from inert diets. Acid digestion takes place by the action of pepsin activity and hydrochloric acid, both secreted by the gastric glands of the stomach. Pepsinogen is the precursor of pepsin which is converted into active enzyme by the action of hydrochloric acid secreted by the proton pump. The goal of this work was to asses the ontogeny of pepsinogen and gastric proton pump expression along larval development of red porgy using RT-PCR and in situ hybridization techniques. Firstly, red porgy specific pepsinogen and proton pump partial sequences were isolated. Amplification products presented 615 and 591 bp and were identified as pepsinogen IIb and the a-subunit of the proton pump (H+/K+-ATPase) by sequencing, respectively. Both sequences were aligned to several predicted pepsinogen and proton pump polypeptides from different vertebrate species showing elevated homologies with them, especially in the case of the proton pump, the identity of which was never less than 90%. Pepsinogen and proton pump expressions were detected from 30 days post-hatching (dph), increasing with development. Proton pump expression was localized in the gastric glands of red porgy larvae as revealed by in situ hybridization, showing increasing signal intensity along the digestive system development. Such results indicated that at 30 dph red porgy starts to acquire the adult digestive capacity and therefore inert diets should be better utilized from that time onwards. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 378
页数:10
相关论文
共 25 条
  • [1] Arellano J, 1999, EUR J HISTOCHEM, V43, P121
  • [2] ELECTRON-MICROSCOPY OF THE OXYNTICOPEPTIC CELLS OF THE GASTRIC GLANDS AND THE INTESTINAL GLANDS OF THE CECUM OF THE GUINEA-PIG
    BAL, HS
    GHOSHAL, NG
    [J]. LABORATORY ANIMALS, 1992, 26 (01) : 47 - 52
  • [3] MORPHOGENESIS OF THE DIGESTIVE-SYSTEM AND SWIM BLADDER OF THE TURBOT, SCOPHTHALMUS-MAXIMUS L AQUACULTURE
    COUSIN, JCB
    LAURENCIN, FB
    [J]. AQUACULTURE, 1985, 47 (04) : 305 - 319
  • [4] Characterization of a partial α-amylase clone from red porgy (Pagrus pagrus):: Expression during larval development
    Darias, MJ
    Murray, HM
    Gallant, JW
    Astola, A
    Douglas, SE
    Yúfera, M
    Martínez-Rodríguez, G
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 2006, 143 (02): : 209 - 218
  • [5] Gene expression of pepsinogen during the larval development of red porgy (Pagrus pagrus)
    Darias, MJ
    Murray, HM
    Martínez-Rodríguez, G
    Cárdenas, S
    Yúfera, M
    [J]. AQUACULTURE, 2005, 248 (1-4) : 245 - 252
  • [6] DARIAS MJ, 2005, THESIS U CADIZ SPAIN
  • [7] Douglas SE, 1999, J FISH BIOL, V55, P897, DOI 10.1111/j.1095-8649.1999.tb00729.x
  • [8] ELBAL MT, 1986, J SUBMICR CYTOL PATH, V18, P335
  • [9] Cellular expression of the pepsinogen and gastric proton pump genes in the stomach of winter flounder as determined by in situ hybridization
    Gawlicka, A
    Leggiadro, CT
    Gallant, JW
    Douglas, SE
    [J]. JOURNAL OF FISH BIOLOGY, 2001, 58 (02) : 529 - 536
  • [10] Helander H.F., 1981, International Review of Cytology, V70, P217, DOI 10.1016/S0074-7696(08)61133-X