Existence of solutions to projected differential equations in Hilbert spaces

被引:41
作者
Cojocaru, MG [1 ]
Jonker, LB [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7M 2W8, Canada
关键词
D O I
10.1090/S0002-9939-03-07015-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of integral curves to the ( discontinuous) vector field that results when a Lipschitz continuous vector field on a Hilbert space of any dimension is projected on a non-empty, closed and convex subset.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 24 条
[1]  
[Anonymous], STOCHASTICS STOCHAST
[2]  
[Anonymous], 1997, TOPICS NONLINEAR ANA
[3]  
[Anonymous], 1988, LINEAR OPERATORS
[4]  
[Anonymous], 1993, THESIS RENSSELAER PO
[5]  
[Anonymous], FINANCIAL NETWORKS S
[6]  
Aubin J.-P., 1984, GRUNDLEHREN MATH WIS, V264
[7]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems
[8]  
COJOCARU MG, 2002, THESIS QUEENS U
[9]  
Dupuis P., 1993, Ann. Oper. Res., V44, P7, DOI [10.1007/BF02073589, DOI 10.1007/BF02073589]
[10]  
Heikkila S., 1994, Monographs and Textbooks in Pure and Applied Mathematics, V181