Existence of solutions to projected differential equations in Hilbert spaces

被引:41
作者
Cojocaru, MG [1 ]
Jonker, LB [1 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7M 2W8, Canada
关键词
D O I
10.1090/S0002-9939-03-07015-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence and uniqueness of integral curves to the ( discontinuous) vector field that results when a Lipschitz continuous vector field on a Hilbert space of any dimension is projected on a non-empty, closed and convex subset.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 24 条
[11]   EXISTENCE THEOREM FOR A CLASS OF DIFFERENTIAL EQUATIONS WITH MULTIVALUED RIGHT-HAND SIDE [J].
HENRY, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (01) :179-186
[12]  
ISAC G, 1992, LACT NOTES MATH, V1528
[13]  
Isac G., 2002, Semin. Fixed Point Theory Cluj-Napoca, V3, P41
[14]  
ISAC G, 2002, PROJECTION OPERATOR
[15]  
Kinderlehrer D., 1980, PURE APPL MATH, V88
[16]   A DYNAMICAL-SYSTEMS APPROACH FOR NETWORK OLIGOPOLIES AND VARIATIONAL-INEQUALITIES [J].
NAGURNEY, A ;
DUPUIS, P ;
ZHANG, D .
ANNALS OF REGIONAL SCIENCE, 1994, 28 (03) :263-283
[17]   On the stability of an adjustment process for spatial price equilibrium modeled as a projected dynamical system [J].
Nagurney, A ;
Zhang, D .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1996, 20 (1-3) :43-62
[18]   PROJECTED DYNAMICAL-SYSTEMS MODELING AND COMPUTATION OF SPATIAL NETWORK EQUILIBRIA [J].
NAGURNEY, A ;
TAKAYAMA, T ;
ZHANG, D .
NETWORKS, 1995, 26 (02) :69-85
[19]  
Nagurney A., 1996, PROJECTED DYNAMICAL
[20]  
Nagurney A., 1993, Network Economics: A Variational Inequality Approach