Power law scaling of lateral deformations with universal Poisson's index for randomly folded thin sheets

被引:20
作者
Balankin, Alexander S. [1 ]
Samayoa Ochoa, Didier [1 ]
Pineda Leon, Ernesto [1 ]
Cortes Montes de Oca, Rolando [1 ]
Horta Rangel, Antonio [1 ]
Martinez Cruz, Miguel Angel [1 ]
机构
[1] Inst Politecn Nacl, Grp Mecan Fractal, Mexico City 07738, DF, Mexico
来源
PHYSICAL REVIEW B | 2008年 / 77卷 / 12期
关键词
D O I
10.1103/PhysRevB.77.125421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the lateral deformations of randomly folded elastoplastic and predominantly plastic thin sheets under the uniaxial and radial compressions. We found that the lateral deformations of cylinders folded from elastoplastic sheets of paper obey a power law behavior with the universal Poisson's index nu = 0.17 +/- 0.01, which does not depend neither the paper kind and sheet sizes (thickness, edge length) nor the folding confinement ratio. In contrast to this, the lateral deformations of randomly folded predominantly plastic aluminum foils display the linear dependence on the axial compression with the universal Poisson's ratio nu(e) = 0.33 +/- 0.01. This difference is consistent with the difference in fractal topology of randomly folded elastoplastic and predominantly plastic sheets, which is found to belong to different universality classes. The general form of constitutive stress-deformation relations for randomly folded elastoplastic sheets is suggested.
引用
收藏
页数:5
相关论文
共 48 条
  • [11] BALANKIN AS, 1982, SOV PHYS-SOLID STATE, V24, P2102
  • [12] UNIVERSAL POISSONS RATIO IN A TWO-DIMENSIONAL RANDOM NETWORK OF RIGID AND NONRIGID BONDS
    BERGMAN, DJ
    DUERING, E
    [J]. PHYSICAL REVIEW B, 1986, 34 (11): : 8199 - 8201
  • [13] Geometry of crumpled paper
    Blair, DL
    Kudrolli, A
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [14] Universal negative Poisson ratio of self-avoiding fixed-connectivity membranes
    Bowick, M
    Cacciuto, A
    Thorleifsson, G
    Travesset, A
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (14) : 148103/1 - 148103/4
  • [15] Numerical observation of a tubular phase in anisotropic membranes
    Bowick, M
    Falcioni, M
    Thorleifsson, G
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (05) : 885 - 888
  • [16] Bowick MJ, 2001, PHYS REP, V344, P255, DOI 10.1016/S0370-1573(00)00128-9
  • [17] Elastic model of an entangled network of interconnected fibres accounting for negative Poisson ratio behaviour and random triangulation
    Delannay, F
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2005, 42 (08) : 2265 - 2285
  • [18] Anomalous strength of membranes with elastic ridges
    DiDonna, BA
    Witten, TA
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (20) : 206105 - 1
  • [19] Evans KE, 2000, ENG SCI EDUC J, V9, P148, DOI 10.1049/esej:20000402
  • [20] The Poisson ratio of crystalline surfaces
    Falcioni, M
    Bowick, MJ
    Guitter, E
    Thorleifsson, G
    [J]. EUROPHYSICS LETTERS, 1997, 38 (01): : 67 - 72