Enhanced high rate capability of dual-phase Li4Ti5O12-TiO2 induced by pseudocapacitive effect

被引:96
作者
Li, X. [1 ]
Lai, C. [1 ]
Xiao, C. W. [1 ]
Gao, X. P. [1 ]
机构
[1] Nankai Univ, Inst New Energy Mat Chem, Tianjin Key Lab Met & Mol Based Mat Chem, Tianjin 300071, Peoples R China
关键词
Lithium-ion battery; Titanate; Titania; Dual-phase; Pseudocapacitive; LITHIUM-ION BATTERIES; ANODE MATERIAL; TITANATE; STORAGE; CARBON; TIO2; PERFORMANCE; NANOTUBES; ELECTRODE; GRAPHENE;
D O I
10.1016/j.electacta.2011.07.101
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The dual-phase Li4Ti5O12-TiO2 nanocomposite is successfully synthesized by a hydrothermal route with adding thiourea. The electrochemical performance of the dual-phase nanocomposite as anode for lithium-ion batteries is investigated by the galvanostatic method, cyclic voltammetry and electrochemical impedance spectra. It is demonstrated that the dual-phase Li4Ti5O12-TiO2 nanocomposite presents the improved electrochemical performance over individual single phase Li4Ti5O12 and anatase TiO2 samples. After 300 cycles at 1 C, the dual-phase Li4Ti5O12-TiO2 nanocomposite can still maintain the large discharge capacity of 116 mAh g(-1). It indicates that the as-prepared nanocomposite can endure great changes of various discharge current densities to retain a good stability. The large discharge capacity of 132 mAh g(-1) is also obtained at the large current density of 1600 mA g(-1) upon cycling. In particular, as verified by the cyclic voltammetry, the pseudocapacitive effect is induced due to the presence of abundant phase interfaces in the dual-phase Li4Ti5O12-TiO2 nanocomposite, which is beneficial to the enhanced high rate capability and good cycle stability. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9152 / 9158
页数:7
相关论文
共 33 条
[1]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Size effects and nanostructured materials for energy applications [J].
Balaya, Palani .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (06) :645-654
[4]   Size Effects in the Li4+xTi5O12 Spinel [J].
Borghols, W. J. H. ;
Wagemaker, M. ;
Lafont, U. ;
Kelder, E. M. ;
Mulder, F. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17786-17792
[5]   Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Li, Xi-Li ;
Liu, Hai-Jing ;
Xiong, Huan-Ming ;
Zhang, Ping-Wei ;
Xia, Yong-Yao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A692-A697
[6]   In situ neutron diffraction study of Li insertion in Li4Ti5O12 [J].
Colin, Jean-Francois ;
Godbole, Vikram ;
Novak, Petr .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) :804-807
[7]   Carbon materials for lithium-ion rechargeable batteries [J].
Flandrois, S ;
Simon, B .
CARBON, 1999, 37 (02) :165-180
[8]   7Li nuclear magnetic resonance studies of hard carbon and graphite/hard carbon anode for Li ion battery [J].
Fujimoto, H. ;
Mabuchi, A. ;
Tokumitsu, K. ;
Chinnasamy, N. ;
Kasuh, T. .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1365-1370
[9]   Multi-electron reaction materials for high energy density batteries [J].
Gao, Xue-Ping ;
Yang, Han-Xi .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (02) :174-189
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603