Electrochemical detection of thrombin by sandwich approach using antibody and aptamer

被引:90
作者
Kang, Yan [1 ]
Feng, Ke-Jun [1 ]
Chen, Ji-Wei [1 ]
Jiang, Jian-Hui [1 ]
Shen, Guo-Li [1 ]
Yu, Ru-Qin [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
关键词
protein; electrochemical analysis; nanoparticle; aptamer;
D O I
10.1016/j.bioelechem.2008.04.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The goal of this work was to introduce a modified electrochemical sandwich model for target protein detection, exploiting antibody as the capturing probe, aptamer as the detection probe and methylene blue as the electrochemical active marker intercalating in the probing aptamer without previous labeling. With appropriate design of the sequence of the aptamer, the aptamer was successfully utilized instead of antibody for obtaining the electrochemical detection. A special immobilization interface consisting of nanogoldchitosan composite film was used to improve the conductivity and performance characteristics of the electrode. The capturing antibody was linked to the glassy carbon electrodes modified with composite film via a linker of glutaraldehyde. Differential pulse voltammetry was performed to produce the response signal. Thrombin was taken as the model target analyte to demonstrate the feasibility of proposed methodology. The sensor shows the linear response for thrombin in the range 1-60 nM with a detection limit of 0.5 nM. The proposed approach provides an alternative approach for sandwich protein assay using aptamers. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 81
页数:6
相关论文
共 46 条
[1]   Aptasensor development: Elucidation of critical parameters for optimal aptamer performance [J].
Baldrich, E ;
Restrepo, A ;
O'Sullivan, CK .
ANALYTICAL CHEMISTRY, 2004, 76 (23) :7053-7063
[2]   A novel electrochemical detection method for aptamer biosensors [J].
Bang, GS ;
Cho, S ;
Kim, BG .
BIOSENSORS & BIOELECTRONICS, 2005, 21 (06) :863-870
[3]   SELECTION OF SINGLE-STRANDED-DNA MOLECULES THAT BIND AND INHIBIT HUMAN THROMBIN [J].
BOCK, LC ;
GRIFFIN, LC ;
LATHAM, JA ;
VERMAAS, EH ;
TOOLE, JJ .
NATURE, 1992, 355 (6360) :564-566
[4]   An enzyme-linked oligonucleotide assay [J].
Drolet, DW ;
MoonMcDermott, L ;
Romig, TS .
NATURE BIOTECHNOLOGY, 1996, 14 (08) :1021-1025
[5]   A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor [J].
Du, Ying ;
Luo, Xi-Liang ;
Xu, Jing-Juan ;
Chen, Hong-Yuan .
BIOELECTROCHEMISTRY, 2007, 70 (02) :342-347
[6]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[7]   Changes in adsorbed fibrinogen upon conversion to fibrin [J].
Evans-Nguyen, Kenyon M. ;
Fuierer, Ryan R. ;
Fitchett, Brian D. ;
Tolles, Lauren R. ;
Conboy, John C. ;
Schoenfisch, Mark H. .
LANGMUIR, 2006, 22 (11) :5115-5121
[8]   Aptamer beacons for the direct detection of proteins [J].
Hamaguchi, N ;
Ellington, A ;
Stanton, M .
ANALYTICAL BIOCHEMISTRY, 2001, 294 (02) :126-131
[9]   Light regulation of aptamer activity: An anti-thrombin aptamer with caged thymidine nucleobases [J].
Heckel, A ;
Mayer, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (03) :822-823
[10]   Nucleic acid-based fluorescence sensors for detecting proteins [J].
Heyduk, E ;
Heyduk, T .
ANALYTICAL CHEMISTRY, 2005, 77 (04) :1147-1156