Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli

被引:13
作者
Gursinsky, Torsten [1 ]
Groebe, Daniel [1 ]
Schierhorn, Angelika [1 ]
Jaeger, Jana [1 ]
Andreesen, Jan R. [1 ]
Soehling, Brigitte [1 ]
机构
[1] Univ Halle Wittenberg, Inst Mikrobiol, D-06120 Halle, Germany
关键词
D O I
10.1128/AEM.02238-07
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Selenoprotein synthesis in Escherichia coli strictly depends on the presence of a specific selenocysteine insertion sequence (SECIS) following the selenocysteine-encoding UGA codon of the respective mRNA. It is recognized by the selenocysteine-specific elongation factor SeIB, leading to cotranslational insertion of selenocysteine into the nascent polypeptide chain. The synthesis of three different selenoproteins from the gram-positive anaerobe Eubacterium acidaminophilum in E. coli was studied. Incorporation of 75 Se into glycine reductase protein B (GrdB1), the peroxiredoxin PrxU, and selenophosphate synthetase (SeID1) was negligible in an E. coli wild-type strain and was fully absent in an E. coli SOB mutant. Selenoprotein synthesis, however, was strongly increased if selB and selC (tRNAs(Sec)) from E. acidaminophilum were coexpressed. Putative secondary structures downstream of the UGA codons did not show any sequence similarity to each other or to the E. coli SECIS element. However, mutations in these structures strongly reduced the amount of 75 Se-labeled protein, indicating that they indeed act as SECIS elements. UGA readthrough mediated by the three different SECIS elements was further analyzed using gst-lacZ translational fusions. In the presence of selB and selC from E. acidaminophilum, UGA readthrough was 36 to 64% compared to the respective cysteine-encoding UGC variant. UGA readthrough of SECIS elements present in Desulfomicrobium baculatum (hydV), Treponema denticola (selD), and Campylobacter jejuni (selW-like gene) was also considerably enhanced in the presence of E. acidaminophilum selB and selC. This indicates recognition of these SECIS elements and might open new perspectives for heterologous selenoprotein synthesis in E. coli.
引用
收藏
页码:1385 / 1393
页数:9
相关论文
共 53 条
[1]   Glycine reductase mechanism [J].
Andreesen, JR .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2004, 8 (05) :454-461
[2]   Various functions of selenols and thiols in anaerobic Gram-positive, amino acids-utilizing bacteria [J].
Andreesen, JR ;
Wagner, M ;
Sonntag, D ;
Kohlstock, M ;
Harms, C ;
Gursinsky, T ;
Jäger, J ;
Parther, T ;
Kabisch, U ;
Gräntzdörffer, A ;
Pich, A ;
Söhling, B .
BIOFACTORS, 1999, 10 (2-3) :263-270
[3]  
[Anonymous], 1989, Molecular Cloning
[4]   High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes [J].
Arnér, ESJ ;
Sarioglu, H ;
Lottspeich, F ;
Holmgren, A ;
Böck, A .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 292 (05) :1003-1016
[5]   INTERACTION OF TRANSLATION FACTOR SELB WITH THE FORMATE DEHYDROGENASE-H SELENOPOLYPEPTIDE MESSENGER-RNA [J].
BARON, C ;
HEIDER, J ;
BOCK, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (09) :4181-4185
[6]   RECOGNITION OF UGA AS A SELENOCYSTEINE CODON IN TYPE-I DEIODINASE REQUIRES SEQUENCES IN THE 3' UNTRANSLATED REGION [J].
BERRY, MJ ;
BANU, L ;
CHEN, Y ;
MANDEL, SJ ;
KIEFFER, JD ;
HARNEY, JW ;
LARSEN, PR .
NATURE, 1991, 353 (6341) :273-276
[7]  
Bock A, 2000, Biofactors, V11, P77
[8]   SECISDesign: a server to design SECIS-elements within the coding sequence [J].
Busch, A ;
Will, S ;
Backofen, R .
BIOINFORMATICS, 2005, 21 (15) :3312-3313
[9]   THE STRUCTURE OF THE MOUSE GLUTATHIONE-PEROXIDASE GENE - THE SELENOCYSTEINE IN THE ACTIVE-SITE IS ENCODED BY THE TERMINATION CODON, TGA [J].
CHAMBERS, I ;
FRAMPTON, J ;
GOLDFARB, P ;
AFFARA, N ;
MCBAIN, W ;
HARRISON, PR .
EMBO JOURNAL, 1986, 5 (06) :1221-1227
[10]   IDENTIFICATION OF A NOVEL TRANSLATION FACTOR NECESSARY FOR THE INCORPORATION OF SELENOCYSTEINE INTO PROTEIN [J].
FORCHHAMMER, K ;
LEINFELDER, W ;
BOCK, A .
NATURE, 1989, 342 (6248) :453-456