Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints

被引:87
作者
Luo, ZQ
Pang, JS
Ralph, D
Wu, SQ
机构
[1] JOHNS HOPKINS UNIV, DEPT MATH SCI, BALTIMORE, MD 21218 USA
[2] UNIV MELBOURNE, DEPT MATH, PARKVILLE, VIC 3052, AUSTRALIA
[3] ACAD SINICA, INST APPL MATH, BEIJING, PEOPLES R CHINA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
hierarchical programs; equilibrium programs; exact penalty functions; error bounds; analytic functions; optimality conditions; normal equations;
D O I
10.1007/BF02592205
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Using the theory of exact penalization for mathematical programs with subanalytic constraints, the theory of error bounds for quadratic inequality systems, and the theory of parametric normal equations, we derive various exact penalty functions for mathematical programs subject to equilibrium constraints, and we also characterize stationary points of these programs.
引用
收藏
页码:19 / 76
页数:58
相关论文
共 56 条
[31]   ERROR-BOUNDS FOR ANALYTIC SYSTEMS AND THEIR APPLICATIONS [J].
LUO, ZQ ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1994, 67 (01) :1-28
[32]  
Mangasarian O., 1969, NONLINEAR PROGRAMMIN
[33]   SUFFICIENCY OF EXACT PENALTY MINIMIZATION [J].
MANGASARIAN, OL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1985, 23 (01) :30-37
[34]   A SIMPLE CHARACTERIZATION OF SOLUTION SETS OF CONVEX-PROGRAMS [J].
MANGASARIAN, OL .
OPERATIONS RESEARCH LETTERS, 1988, 7 (01) :21-26
[35]   FRITZ JOHN NECESSARY OPTIMALITY CONDITIONS IN PRESENCE OF EQUALITY AND INEQUALITY CONSTRAINTS [J].
MANGASARIAN, OL ;
FROMOVITZ, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 17 (01) :37-+
[36]   NETWORK DESIGN PROBLEM WITH CONGESTION EFFECTS - A CASE OF BILEVEL PROGRAMMING [J].
MARCOTTE, P .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :142-162
[37]  
MARCOTTE P, 1993, THESIS U MONTREAL MO, V920
[38]  
Ortega J.M, 1970, CLASSICS APPL MATH
[39]   ON OPTIMIZATION PROBLEMS WITH VARIATIONAL INEQUALITY CONSTRAINTS [J].
OUTRATA, JV .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :340-357
[40]  
Pang J.-S., 1994, Handbook of Global Optimization, P271