Decay rates of metastable states in cubic potential by variational perturbation theory

被引:15
作者
Kleinert, H
Mustapic, I
机构
[1] Inst. für Theoretische Physik, Freie Universität Berlin, D-14195 Berlin
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1996年 / 11卷 / 24期
关键词
D O I
10.1142/S0217751X96002029
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Variational perturbation theory is used to determine the decay rates of metastable states across a cubic barrier of arbitrary height. For high barriers, a variational resummation procedure is applied to the complex energy eigenvalues obtained from a WKB expansion. For low barriers, the variational resummation procedure converts the non-Borel-summable Rayleigh-Schrodinger expansion into an exponentially fast convergent approximation. The results in the two regimes match each other well and yield very accurate imaginary parts for the energy eigenvalues. This is demonstrated by comparison with the complex eigenvalues obtained from solutions of the Schrodinger equation via the complex-coordinate rotation method.
引用
收藏
页码:4383 / 4399
页数:17
相关论文
共 30 条
[1]   THERMAL-INSTABILITY IN (PHI(3))6 [J].
ALTHERR, T ;
GRANDOU, T ;
PISARSKI, RD .
PHYSICS LETTERS B, 1991, 271 (1-2) :183-186
[2]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[3]   PROOF OF THE CONVERGENCE OF THE LINEAR DELTA-EXPANSION - ZERO DIMENSIONS [J].
BUCKLEY, IRC ;
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2554-2559
[4]   CLASSICAL PATHS AND QUANTUM-MECHANICS [J].
CARLITZ, RD ;
NICOLE, DA .
ANNALS OF PHYSICS, 1985, 164 (02) :411-462
[5]  
COLEMAN S, 1979, WHYS SUBNUCLEAR PHYS
[6]   LARGE ORDER EXPANSION IN PERTURBATION-THEORY [J].
COLLINS, JC ;
SOPER, DE .
ANNALS OF PHYSICS, 1978, 112 (01) :209-234
[7]   THE ANHARMONIC-OSCILLATOR - PERTURBATION-SERIES FOR CUBIC AND QUARTIC ENERGY DISTORTION [J].
DRUMMOND, JE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (07) :1651-1661
[8]   CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR [J].
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2560-2572
[9]   EFFECTIVE CLASSICAL PARTITION-FUNCTIONS [J].
FEYNMAN, RP ;
KLEINERT, H .
PHYSICAL REVIEW A, 1986, 34 (06) :5080-5084
[10]   VARIATIONAL APPROACH TO QUANTUM STATISTICAL-MECHANICS OF NONLINEAR-SYSTEMS WITH APPLICATION TO SINE-GORDON CHAINS [J].
GIACHETTI, R ;
TOGNETTI, V .
PHYSICAL REVIEW LETTERS, 1985, 55 (09) :912-915