CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR

被引:124
作者
DUNCAN, A [1 ]
JONES, HF [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT PHYS,LONDON SW7 2BZ,ENGLAND
来源
PHYSICAL REVIEW D | 1993年 / 47卷 / 06期
关键词
D O I
10.1103/PhysRevD.47.2560
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recent proof of the convergence of the optimized delta expansion for one-dimensional non-Gaussian integrals is extended to the finite-temperature partition function of the quantum anharmonic oscillator. The convergence is exponentially fast, with the remainder falling as e(-cN2/3) at order N in the expansion, independently of the size of the coupling or the sign of the mass term. In particular, the approach gives a convergent resummation procedure for the double-well (non-Borel-summable) case.
引用
收藏
页码:2560 / 2572
页数:13
相关论文
共 24 条
[1]   NOVEL PERTURBATIVE SCHEME IN QUANTUM-FIELD THEORY [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW D, 1988, 37 (06) :1472-1484
[2]  
BREZIN E, 1977, PHYS REV D, V15, P154
[3]   PROOF OF THE CONVERGENCE OF THE LINEAR DELTA-EXPANSION - ZERO DIMENSIONS [J].
BUCKLEY, IRC ;
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2554-2559
[4]   DELTA EXPANSION APPLIED TO STRONG-COUPLING Z(2), U(1), AND SU(2) GAUGE-THEORY ON THE LATTICE IN 4 DIMENSIONS [J].
BUCKLEY, IRC ;
JONES, HF .
PHYSICAL REVIEW D, 1992, 45 (06) :2073-2080
[5]  
CASWELL WE, 1979, ANN PHYS-NEW YORK, V123, P153, DOI 10.1016/0003-4916(79)90269-0
[6]   INTERPOLATING LAGRANGIANS AND U(1) GAUGE-THEORY ON THE LATTICE [J].
DUNCAN, A ;
JONES, HF .
NUCLEAR PHYSICS B, 1989, 320 (01) :189-201
[7]   NONPERTURBATIVE PHYSICS FROM INTERPOLATING ACTIONS [J].
DUNCAN, A ;
MOSHE, M .
PHYSICS LETTERS B, 1988, 215 (02) :352-358
[8]  
DYSON FJ, 1952, PHYS REV, V85, P861
[9]   THE DELTA-EXPANSION IN THE LARGE-N LIMIT [J].
GANDHI, SK ;
JONES, HF ;
PINTO, MB .
NUCLEAR PHYSICS B, 1991, 359 (2-3) :429-440
[10]   ANHARMONIC-OSCILLATOR - A NEW APPROACH [J].
HALLIDAY, IG ;
SURANYI, P .
PHYSICAL REVIEW D, 1980, 21 (06) :1529-1537