CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR

被引:124
作者
DUNCAN, A [1 ]
JONES, HF [1 ]
机构
[1] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT PHYS,LONDON SW7 2BZ,ENGLAND
来源
PHYSICAL REVIEW D | 1993年 / 47卷 / 06期
关键词
D O I
10.1103/PhysRevD.47.2560
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recent proof of the convergence of the optimized delta expansion for one-dimensional non-Gaussian integrals is extended to the finite-temperature partition function of the quantum anharmonic oscillator. The convergence is exponentially fast, with the remainder falling as e(-cN2/3) at order N in the expansion, independently of the size of the coupling or the sign of the mass term. In particular, the approach gives a convergent resummation procedure for the double-well (non-Borel-summable) case.
引用
收藏
页码:2560 / 2572
页数:13
相关论文
共 24 条
[11]   CONVERGENT PERTURBATION SERIES FOR THE ANHARMONIC-OSCILLATOR [J].
HALLIDAY, IG ;
SURANYI, P .
PHYSICS LETTERS B, 1979, 85 (04) :421-423
[12]   RENORMALIZATION OF THE LINEAR DELTA-EXPANSION - THE GROSS-NEVEU MODEL [J].
JONES, HF ;
MOSHE, M .
PHYSICS LETTERS B, 1990, 234 (04) :492-496
[13]   RENORMALIZED PERTURBATION-SERIES [J].
KILLINGBECK, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (05) :1005-1008
[14]  
NEVEU A, 1991, FESTSCHRIFT A MARTIN
[15]   NONSTANDARD EXPANSION TECHNIQUES FOR THE EFFECTIVE POTENTIAL IN LAMBDA-PHI-4 QUANTUM-FIELD THEORY [J].
OKOPINSKA, A .
PHYSICAL REVIEW D, 1987, 35 (06) :1835-1847
[16]   CONVERGENT PERTURBATION-THEORY FOR THE SCALAR PHI-2P FIELD-THEORIES - THE GELL-MANN-LOW FUNCTION [J].
SHAVERDYAN, BS ;
USHVERIDZE, AG .
PHYSICS LETTERS B, 1983, 123 (05) :316-318
[17]  
SIGILLITO VG, 1977, EXPLICIT PRIORI INEQ
[18]   VARIATIONAL PERTURBATION-THEORY - ANHARMONIC-OSCILLATOR [J].
SISSAKIAN, AN ;
SOLOVTSOV, IL .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 54 (02) :263-271
[19]   2ND-ORDER CORRECTIONS TO THE GAUSSIAN EFFECTIVE POTENTIAL OF LAMBDA-PHI-4 THEORY [J].
STANCU, I ;
STEVENSON, PM .
PHYSICAL REVIEW D, 1990, 42 (08) :2710-2725
[20]   OPTIMIZED PERTURBATION-THEORY [J].
STEVENSON, PM .
PHYSICAL REVIEW D, 1981, 23 (12) :2916-2944