On the role of entanglement in quantum-computational speed-up

被引:499
作者
Jozsa, R
Linden, N
机构
[1] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2003年 / 459卷 / 2036期
关键词
quantum computational speed-up; quantum complexity; entanglement; quantum algorithms;
D O I
10.1098/rspa.2002.1097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For any quantum algorithm operating on pure states, we prove that the presence of multi-partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the quantum algorithm is to offer an exponential speed-up over classical computation. Furthermore, we prove that the algorithm can be efficiently simulated classically to within a prescribed tolerance 77 even if a suitably small amount of global entanglement is present. We explicitly identify the occurrence of increasing multi-partite entanglement in Sher's algorithm. Our results do not apply to quantum algorithms operating on mixed states in general and we discuss the suggestion that an exponential computational speed-up might be possible with mixed states in the total absence of entanglement. Finally, despite the essential role of entanglement for pure-state algorithms, we argue that it is nevertheless misleading to view entanglement as a key resource for quantum-computational power.
引用
收藏
页码:2011 / 2032
页数:22
相关论文
共 31 条
[1]   Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (18) :3992-3995
[2]  
AMBAINIS A, 2000, P 3I ANN ACM S THEOR
[3]   A UNIVERSAL 2-BIT GATE FOR QUANTUM COMPUTATION [J].
BARENCO, A .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937) :679-683
[4]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[5]   Quantum complexity theory [J].
Bernstein, E ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1411-1473
[6]  
Bhatia R., 1997, MATRIX ANAL
[7]  
Braunstein SL, 2002, QUANTUM INFORM COMPU, V2, P399
[8]   Separability of very noisy mixed states and implications for NMR Quantum computing [J].
Braunstein, SL ;
Caves, CM ;
Jozsa, R ;
Linden, N ;
Popescu, S ;
Schack, R .
PHYSICAL REVIEW LETTERS, 1999, 83 (05) :1054-1057
[9]   RAPID SOLUTION OF PROBLEMS BY QUANTUM COMPUTATION [J].
DEUTSCH, D ;
JOZSA, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1907) :553-558
[10]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117