Subspace confinement: how good is your qubit?

被引:15
作者
Devitt, Simon J.
Schirmer, Sonia G.
Oi, Daniel K. L.
Cole, Jared H.
Hollenberg, Lloyd C. L.
机构
[1] Univ Cambridge, Ctr Quantum Computat, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Melbourne, Ctr Quantum Comp Technol, Dept Phys, Parkville, Vic 3052, Australia
[3] Univ Strathclyde, Dept Phys, SUPA, Glasgow G4 0NG, Lanark, Scotland
来源
NEW JOURNAL OF PHYSICS | 2007年 / 9卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/1367-2630/9/10/384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The basic operating element of standard quantum computation is the qubit, an isolated two-level system that can be accurately controlled, initialized and measured. However, the majority of proposed physical architectures for quantum computation are built from systems that contain much more complicated Hilbert space structures. Hence, defining a qubit requires the identification of an appropriate controllable two-dimensional sub-system. This prompts the obvious question of how well a qubit, thus defined, is confined to this subspace, and whether we can experimentally quantify the potential leakage into states outside the qubit subspace. We demonstrate how subspace leakage can be characterized using minimal theoretical assumptions by examining the Fourier spectrum of the oscillation experiment.
引用
收藏
页数:22
相关论文
共 32 条
[21]   Quantum entanglement via optical control of atom-atom interactions [J].
Lukin, MD ;
Hemmer, PR .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2818-2821
[22]   Rabi oscillations in a large Josephson-junction qubit [J].
Martinis, JM ;
Nam, S ;
Aumentado, J ;
Urbina, C .
PHYSICAL REVIEW LETTERS, 2002, 89 (11) :1-117901
[23]   Anyon computers with smaller groups [J].
Mochon, C .
PHYSICAL REVIEW A, 2004, 69 (03) :032306-1
[24]   Josephson persistent-current qubit [J].
Mooij, JE ;
Orlando, TP ;
Levitov, L ;
Tian, L ;
van der Wal, CH ;
Lloyd, S .
SCIENCE, 1999, 285 (5430) :1036-1039
[25]   Coherent control of macroscopic quantum states in a single-Cooper-pair box [J].
Nakamura, Y ;
Pashkin, YA ;
Tsai, JS .
NATURE, 1999, 398 (6730) :786-788
[26]  
Preskill J., 1998, Introduction to quantum computation and information, P213
[27]   Constraints on relaxation rates for N-level quantum systems -: art. no. 022107 [J].
Schirmer, SG ;
Solomon, AI .
PHYSICAL REVIEW A, 2004, 70 (02) :022107-1
[28]   Error correcting codes in quantum theory [J].
Steane, AM .
PHYSICAL REVIEW LETTERS, 1996, 77 (05) :793-797
[29]   Quantum error correction of a qubit loss in an addressable atomic system [J].
Vala, J ;
Whaley, KB ;
Weiss, DS .
PHYSICAL REVIEW A, 2005, 72 (05)
[30]  
WENDIN G, 2005, CONDMAT0508729