Geometry of black hole thermodynamics

被引:193
作者
Åman, JE [1 ]
Bengtsson, I [1 ]
Pidokrajt, N [1 ]
机构
[1] Stockholm Univ, AlbaNova, Fysikum, S-10691 Stockholm, Sweden
关键词
black hole; entropy; Hessian;
D O I
10.1023/A:1026058111582
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Hessian of the entropy function can be thought of as a metric tensor on the state space. In the context of thermodynamical fluctuation theory Ruppeiner has argued that the Riemannian geometry of this metric gives insight into the underlying statistical mechanical system; the claim is supported by numerous examples. We study this geometry for some families of black holes. It is flat for the BTZ and Reissner-Nordstrom black holes, while curvature singularities occur for the Reissner-Nordstrom-anti-de Sitter and Kerr black holes.
引用
收藏
页码:1733 / 1743
页数:11
相关论文
共 21 条
[11]   THERMODYNAMICS OF BLACK-HOLES IN ANTI-DESITTER SPACE [J].
HAWKING, SW ;
PAGE, DN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 87 (04) :577-588
[12]  
LANDAU LD, 1980, STAT PHYSICS
[13]   Hamiltonian thermodynamics of the Reissner-Nordstrom-anti-de Sitter black hole [J].
Louko, J ;
WintersHilt, SN .
PHYSICAL REVIEW D, 1996, 54 (04) :2647-2663
[14]   ON EQUIVALENCE OF 2 METRICS IN CLASSICAL THERMODYNAMICS [J].
MRUGALA, R .
PHYSICA A, 1984, 125 (2-3) :631-639
[15]   STATISTICAL-MECHANICS OF GRAVITATING SYSTEMS [J].
PADMANABHAN, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 188 (05) :285-362
[16]   RIEMANNIAN GEOMETRY IN THERMODYNAMIC FLUCTUATION THEORY [J].
RUPPEINER, G .
REVIEWS OF MODERN PHYSICS, 1995, 67 (03) :605-659
[17]   Riemannian geometry in thermodynamic fluctuation theory (vol 67, pg 605, 1995) [J].
Ruppeiner, G .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :313-313
[18]   THERMODYNAMICS - RIEMANNIAN GEOMETRIC MODEL [J].
RUPPEINER, G .
PHYSICAL REVIEW A, 1979, 20 (04) :1608-1613
[19]   LENGTH IN STATISTICAL THERMODYNAMICS [J].
SALAMON, P ;
NULTON, JD ;
BERRY, RS .
JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (05) :2433-2436
[20]   ON THE RELATION BETWEEN ENTROPY AND ENERGY VERSIONS OF THERMODYNAMIC LENGTH [J].
SALAMON, P ;
NULTON, J ;
IHRIG, E .
JOURNAL OF CHEMICAL PHYSICS, 1984, 80 (01) :436-437