Structural and functional biomarkers of prodromal Alzheimer's disease: A high-dimensional pattern classification study

被引:225
作者
Fan, Yong [1 ]
Resnick, Susan M. [2 ]
Wu, Xiaoying [1 ]
Davatzikos, Christos [1 ]
机构
[1] Univ Penn, Dept Radiol, Sect Biomed Image Anal, Philadelphia, PA 19104 USA
[2] NIA, Lab Personal & Cognit, Bethesda, MD 20892 USA
关键词
Alzheimer's disease; MCI; high-dimensional pattern classification; MRI; PET; voxel-based analysis; diagnosis of AD;
D O I
10.1016/j.neuroimage.2008.02.043
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This work builds upon previous studies that reported high sensitivity and specificity in classifying individuals with mild cognitive impairment (MCI), which is often a prodromal phase of Alzheimer's disease (AD), via pattern classification of MRI scans. The current study integrates MRI and PET O-15 water scans from 30 participants in the Baltimore Longitudinal Study of Aging, and tests the hypothesis that joint evaluation of structure and function can yield higher classification accuracy than either alone. Classification rates of up to 100% accuracy were achieved via leave-one-out cross-validation, whereas conservative estimates of generalization performance in new scans, evaluated via bagging cross-validation, yielded an area under the receiver operating characteristic (ROC) curve equal to 0.978 (97.8%), indicating excellent diagnostic accuracy. Spatial maps of regions determined to contribute the most to the classification implicated many temporal, prefrontal, orbitofrontal, and parietal regions. Detecting complex patterns of brain abnormality in early stages of cognitive impairment has pivotal importance for the detection and management of AD. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 84 条
[1]   Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging [J].
Ardekani, Siamak ;
Kumar, Anand ;
Bartzokis, George ;
Sinha, Usha .
MAGNETIC RESONANCE IMAGING, 2007, 25 (02) :154-167
[2]   Computer-assisted imaging to assess brain structure in healthy and diseased brains [J].
Ashburner, J ;
Csernansky, JG ;
Davatzikos, C ;
Fox, NC ;
Frisoni, GB ;
Thompson, PM .
LANCET NEUROLOGY, 2003, 2 (02) :79-88
[3]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[4]   Hippocampus volume loss due to chronic heavy drinking [J].
Beresford, Thomas P. ;
Arciniegas, David B. ;
Alfers, Julie ;
Clapp, Lori ;
Martin, Brandon ;
Liu, Yiping Du Dengfeng ;
Shen, Dinggang ;
Davatzikos, Christos .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2006, 30 (11) :1866-1870
[5]   Hypercortisolism in alcohol dependence and its relation to hippocampal volume loss [J].
Beresford, Thomas P. ;
Arciniegas, David B. ;
Alfers, Julie ;
Clapp, Lori ;
Martin, Brandon ;
Beresford, Henry F. ;
Du, Yiping ;
Liu, Dengfeng ;
Shen, Dinggang ;
Davatzikos, Christos ;
Laudenslager, Mark L. .
JOURNAL OF STUDIES ON ALCOHOL, 2006, 67 (06) :861-867
[6]   The contribution of voxel-based morphometry in staging patients with mild cognitive impairment [J].
Bozzali, M. ;
Filippi, M. ;
Magnani, G. ;
Cercignani, M. ;
Franceschi, M. ;
Schiatti, E. ;
Castiglioni, S. ;
Mossini, R. ;
Falautano, M. ;
Scotti, G. ;
Comi, G. ;
Falini, A. .
NEUROLOGY, 2006, 67 (03) :453-460
[7]  
Braak H, 1998, J NEURAL TRANSM-SUPP, P97
[8]   Bagging predictors [J].
Breiman, L .
MACHINE LEARNING, 1996, 24 (02) :123-140
[9]  
Chételat G, 2002, NEUROREPORT, V13, P1939
[10]   A unified statistical approach to deformation-based morphometry [J].
Chung, MK ;
Worsley, KJ ;
Paus, T ;
Cherif, C ;
Collins, DL ;
Giedd, JN ;
Rapoport, JL ;
Evanst, AC .
NEUROIMAGE, 2001, 14 (03) :595-606