Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan

被引:30
作者
Wright, WW [1 ]
Guffanti, GT [1 ]
Vanderkooi, JM [1 ]
机构
[1] Univ Penn, Sch Med, Dept Biochem & Biophys, Johnson Res Fdn, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0006-3495(03)74626-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Sugars are known to stabilize proteins. This study addresses questions of the nature of sugar and proteins incorporated in solid sugar films. Infrared (IR) and Raman spectroscopy was used to examine trehalose and sucrose films and glycerol/water solvent. Proteins and indole-containing compounds that are imbedded in the sugar films were studied by IR and optical (absorption, fluorescence, and phosphorescence) spectroscopy. Water is able to move in the sugar films in the temperature range of 20-300 K as suggested by IR absorption bands of HOH bending and OH stretching modes that shift continuously with temperature. In glycerol/water these bands reflect the glass transition at; 160 K. The fluorescence of N-acetyl-L-tryptophanamide and tryptophan of melittin, Ca-free parvalbumin, and staphylococcal nuclease in dry trehalose/sucrose films remains broad and red-shifted over a temperature excursion of 20-300 K. In contrast, the fluorescence of these compounds in glycerol/water solvent shift to the blue as temperature decreases. The fluorescence of the buried tryptophan in Ca-bound parvalbumin in either sugar film or glycerol/water remains blue-shifted and has vibronic resolution over the entire temperature range. The red shift for fluorescence of indole groups exposed to solvent in the sugars is consistent with the motion of water molecules around the excited-state molecule that occurs even at low temperature, although the possibility of static complex formation between the excited-state molecule and water or other factors is discussed. The phosphorescence yield for protein and model indole compounds is sensitive to the matrix glass transition. Phosphorescence emission spectra are resolved and shift little in different solvents or temperature, as predicted by the small dipole moment of the excited triplet state molecule. The conclusion is that the sugar film maintains the environment present at the glass formation temperature for surface Trp and amide groups over a wide temperature excursion. In glycerol/water these groups reflect local changes in the environment as temperature changes.
引用
收藏
页码:1980 / 1995
页数:16
相关论文
共 59 条
[1]   Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer [J].
Akao, K ;
Okubo, Y ;
Asakawa, N ;
Inoue, Y ;
Sakurai, M .
CARBOHYDRATE RESEARCH, 2001, 334 (03) :233-241
[2]   EXCITED-STATE CHEMISTRY OF AROMATIC AMINO-ACIDS AND RELATED PEPTIDES .3. TRYPTOPHAN [J].
BENT, DV ;
HAYON, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (10) :2612-2619
[3]   STRUCTURE AND PROPERTIES OF ICE [J].
BJERRUM, N .
SCIENCE, 1952, 115 (2989) :385-390
[4]   TEMPERATURE-DEPENDENCE OF DIELECTRIC-RELAXATION IN H2O AND D2O ICE - A DISSIPATIVE QUANTUM TUNNELING APPROACH [J].
BRUNI, F ;
CONSOLINI, G ;
CARERI, G .
JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (01) :538-547
[5]   AB-INITIO CALCULATIONS OF VIBRONIC SPECTRA FOR INDOLE [J].
CALLIS, PR ;
VIVIAN, JT ;
SLATER, LS .
CHEMICAL PHYSICS LETTERS, 1995, 244 (1-2) :53-58
[6]   MOLECULAR-ORBITAL THEORY OF THE 1LB AND 1LA STATES OF INDOLE [J].
CALLIS, PR .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (06) :4230-4240
[7]   AN INFRARED SPECTROSCOPIC STUDY OF THE INTERACTIONS OF CARBOHYDRATES WITH DRIED PROTEINS [J].
CARPENTER, JF ;
CROWE, JH .
BIOCHEMISTRY, 1989, 28 (09) :3916-3922
[8]   SUBPICOSECOND RESOLUTION STUDIES OF SOLVATION DYNAMICS IN POLAR APROTIC AND ALCOHOL SOLVENTS [J].
CASTNER, EW ;
MARONCELLI, M ;
FLEMING, GR .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (03) :1090-1097
[9]   Glycerol condensed phases part II. A molecular dynamics study of the conformational structure and hydrogen bonding [J].
Chelli, R ;
Procacci, P ;
Cardini, G ;
Califano, S .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (05) :879-885
[10]   A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass [J].
Cordone, L ;
Galajda, P ;
Vitrano, E ;
Gassmann, A ;
Ostermann, A ;
Parak, F .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 1998, 27 (02) :173-176