Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae

被引:73
作者
Protchenko, O [1 ]
Philpott, CC [1 ]
机构
[1] NIDDK, Liver Dis Sect, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1074/jbc.M306584200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae responds to iron deprivation by increasing the transcription of genes involved in the uptake of environmental iron and in the mobilization of vacuolar iron stores. HMX1 is also transcribed under conditions of iron deprivation and is under the control of the major iron-dependent transcription factor, Aft1p. Although Hmx1p exhibits limited homology to heme oxygenases, it has not been shown to be enzymatically active. We find that Hmx1p is a resident protein of the endoplasmic reticulum and that isolated yeast membranes contain a heme degradation activity that is dependent on HMX1. Hmx1p facilitates the capacity of cells to use heme as a nutritional iron source. Deletion of HMX1 leads to defects in iron accumulation and to expansion of intracellular heme pools. These alterations in the regulatory pools of iron lead to activation of Aft1p and inappropriate activation of heme-dependent transcription factors. Expression of HmuO, the heme oxygenase from Corynebacterium diphtheriae, restores iron and heme levels, as well as Aft1p- and heme-dependent transcriptional activities, to those of wild type cells, indicating that the heme degradation activity associated with Hmx1p is important in mediating iron and heme homeostasis. Hmx1p promotes both the reutilization of heme iron and the regulation of heme-dependent transcription during periods of iron scarcity.
引用
收藏
页码:36582 / 36587
页数:6
相关论文
共 57 条
[1]  
Adams Alison, 1997, P123
[2]   THE FET3 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES A MULTICOPPER OXIDASE REQUIRED FOR FERROUS IRON UPTAKE [J].
ASKWITH, C ;
EIDE, D ;
VANHO, A ;
BERNARD, PS ;
LI, LT ;
DAVISKAPLAN, S ;
SIPE, DM ;
KAPLAN, J .
CELL, 1994, 76 (02) :403-410
[3]   Cloning and expression of a heme binding protein from the genome of Saccharomyces cerevisiae [J].
Auclair, K ;
Huang, HW ;
Moënne-Loccoz, P ;
de Montellano, PRO .
PROTEIN EXPRESSION AND PURIFICATION, 2003, 28 (02) :340-349
[4]  
Baxter BK, 1996, MOL CELL BIOL, V16, P6444
[5]   Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. [J].
Blaiseau, PL ;
Lesuisse, E ;
Camadro, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34221-34226
[6]   Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (Hmu O) from Corynebacterium diphtheriae [J].
Chu, GC ;
Katakura, K ;
Zhang, XH ;
Yoshida, T ;
Ikeda-Saito, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :21319-21325
[7]   COT1, A GENE INVOLVED IN COBALT ACCUMULATION IN SACCHAROMYCES-CEREVISIAE [J].
CONKLIN, DS ;
MCMASTER, JA ;
CULBERTSON, MR ;
KUNG, C .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (09) :3678-3688
[8]   Phytobilin biosynthesis:: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803 [J].
Cornejo, J ;
Willows, RD ;
Beale, SI .
PLANT JOURNAL, 1998, 15 (01) :99-107
[9]   GENETIC-EVIDENCE THAT FERRIC REDUCTASE IS REQUIRED FOR IRON UPTAKE IN SACCHAROMYCES-CEREVISIAE [J].
DANCIS, A ;
KLAUSNER, RD ;
HINNEBUSCH, AG ;
BARRIOCANAL, JG .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (05) :2294-2301
[10]   The heme-oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants [J].
Davis, SJ ;
Bhoo, SH ;
Durski, AM ;
Walker, JM ;
Vierstra, RD .
PLANT PHYSIOLOGY, 2001, 126 (02) :656-669