Long-range correlation properties of area-preserving chaotic systems

被引:9
作者
Adrover, A
Giona, M
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Chim, Ctr Interuniv Sist Disord & Fratt Ingn Chem, I-00184 Rome, Italy
[2] Univ Cagliari, Dipartimento Ingn Chim, I-09123 Cagliari, Italy
来源
PHYSICA A | 1998年 / 253卷 / 1-4期
关键词
two-dimensional area-preserving maps; chaotic Hamiltonian systems; long-range correlations;
D O I
10.1016/S0378-4371(97)00667-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article shows numerically that the variance of the stretching exponents for two-dimensional chaotic area-preserving systems grows asymptotically as a linear function of time, although an intermediate anomalous power-law scaling may occur. This implies that the autocorrelation function of the stretching exponents is integrable. This result is a generic property of 2-d mixing systems generated by diffeomorphisms. The physical significance of the non-persistent anomalous behavior in the decay of fluctuations is briefly addressed. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 31 条
[1]   DECAY OF VELOCITY AUTOCORRELATION FUNCTION [J].
ALDER, BJ ;
WAINWRIGHT, TE .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01) :18-+
[2]  
ANOSOV DV, 1995, ENCYCL MATH SCI, V66, P10
[3]  
ANOSOV DV, 1963, SOV MATH DOKL, V4, P1153
[4]   Resonances for intermittent systems [J].
Baladi, V. ;
Eckmann, J-P ;
Ruelle, D. .
NONLINEARITY, 1989, 2 (01) :119-135
[5]   STATISTICAL RELAXATION UNDER NONTURBULENT CHAOTIC FLOWS - NON-GAUSSIAN HIGH-STRETCH TAILS OF FINITE-TIME LYAPUNOV EXPONENT DISTRIBUTIONS [J].
BEIGIE, D ;
LEONARD, A ;
WIGGINS, S .
PHYSICAL REVIEW LETTERS, 1993, 70 (03) :275-278
[6]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[7]   DECAY OF CORRELATIONS IN CERTAIN HYPERBOLIC SYSTEMS [J].
CASATI, G ;
COMPARIN, G ;
GUARNERI, I .
PHYSICAL REVIEW A, 1982, 26 (01) :717-719
[8]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[9]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261
[10]  
GIONA M, UNPUB J FLUID MECH