Cyanobacterial chemical production

被引:38
作者
Case, Anna E. [1 ]
Atsumi, Shota [1 ]
机构
[1] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Cyanobacteria; Photosynthesis; Metabolic engineering; Synthetic biology; SYNECHOCYSTIS SP PCC6803; SYNTHETIC BIOLOGY; PHOTOSYNTHETIC PRODUCTION; GENE-EXPRESSION; CARBON-DIOXIDE; LACTIC-ACID; ENGINEERING CYANOBACTERIA; HETEROLOGOUS EXPRESSION; ISOPROPANOL PRODUCTION; ETHANOL SYNTHESIS;
D O I
10.1016/j.jbiotec.2016.05.023
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The increase in global temperatures caused by rising CO2 levels necessitates the development of alternative sources of fuel and chemicals. One appealing alternative that has been receiving increased attention in recent years is the photosynthetic conversion of atmospheric CO2 to biofuels and chemical products using genetically engineered cyanobacteria. This can help to not only provide an alternate "greener" source for some of the most popular petroleum based products but it can also help to reduce atmospheric CO2. Utilizing cyanobacteria rather than plants allows for reduced land requirements and reduces competition with food crops. This review discusses advancements in the field since 2012 with a particular emphasis on production of hydrocarbons. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 81 条
[1]   Design of riboregulators for control of cyanobacterial (Synechocystis) protein expression [J].
Abe, Koichi ;
Sakai, Yuta ;
Nakashima, Saki ;
Araki, Masataka ;
Yoshida, Wataru ;
Sode, Koji ;
Ikebukuro, Kazunori .
BIOTECHNOLOGY LETTERS, 2014, 36 (02) :287-294
[2]   TIGHTLY REGULATED TAC PROMOTER VECTORS USEFUL FOR THE EXPRESSION OF UNFUSED AND FUSED PROTEINS IN ESCHERICHIA-COLI [J].
AMANN, E ;
OCHS, B ;
ABEL, KJ .
GENE, 1988, 69 (02) :301-315
[3]   Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp PCC6803 [J].
Angermayr, S. Andreas ;
van der Woude, Aniek D. ;
Correddu, Danilo ;
Vreugdenhil, Angie ;
Verrone, Valeria ;
Hellingwerf, Klaas J. .
BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
[4]   Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde [J].
Atsumi, Shota ;
Higashide, Wendy ;
Liao, James C. .
NATURE BIOTECHNOLOGY, 2009, 27 (12) :1177-U142
[5]   Heterologous Expression of the Mevalonic Acid Pathway in Cyanobacteria Enhances Endogenous Carbon Partitioning to Isoprene [J].
Bentley, Fiona K. ;
Zurbriggen, Andreas ;
Melis, Anastasios .
MOLECULAR PLANT, 2014, 7 (01) :71-86
[6]   Synthetic biology of cyanobacteria: unique challenges and opportunities [J].
Berla, Bertram M. ;
Saha, Rajib ;
Immethun, Cheryl M. ;
Maranas, Costas D. ;
Moon, Tae Seok ;
Pakrasi, Himadri B. .
FRONTIERS IN MICROBIOLOGY, 2013, 4
[7]   Parts plus pipes: Synthetic biology approaches to metabolic engineering [J].
Boyle, Patrick M. ;
Silver, Pamela A. .
METABOLIC ENGINEERING, 2012, 14 (03) :223-232
[8]  
Camsund Daniel, 2014, Front Bioeng Biotechnol, V2, P40, DOI 10.3389/fbioe.2014.00040
[9]   Photo-catalytic conversion of carbon dioxide to organic acids by a recombinant cyanobacterium incapable of glycogen storage [J].
Carrieri, Damian ;
Paddock, Troy ;
Maness, Pin-Ching ;
Seibert, Michael ;
Yu, Jianping .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9457-9461
[10]   Boosting Autofermentation Rates and Product Yields with Sodium Stress Cycling: Application to Production of Renewable Fuels by Cyanobacteria [J].
Carrieri, Damian ;
Momot, Dariya ;
Brasg, Ian A. ;
Ananyev, Gennady ;
Lenz, Oliver ;
Bryant, Donald A. ;
Dismukes, G. Charles .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (19) :6455-6462