A "fast growth" method of computing free energy differences

被引:146
作者
Hendrix, DA [1 ]
Jarzynski, C
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.1353552
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Let DeltaF be the free energy difference between two equilibrium states of a system. An established method of numerically computing DeltaF involves a single, long "switching simulation," during which the system is driven reversibly from one state to the other (slow growth, or adiabatic switching). Here we study a method of obtaining the same result from numerous independent, irreversible simulations of a much shorter duration (fast growth). We illustrate the fast growth method, computing the excess chemical potential of a Lennard-Jones fluid as a test case, and we examine the performance of fast growth as a practical computational tool. (C) 2001 American Institute of Physics.
引用
收藏
页码:5974 / 5981
页数:8
相关论文
共 39 条
[1]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[2]  
[Anonymous], J CHEM PHYS
[3]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[4]   MOLECULAR-DYNAMICS FREE-ENERGY CALCULATION IN 4 DIMENSIONS [J].
BEUTLER, TC ;
VANGUNSTEREN, WF .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (02) :1417-1422
[5]   Free energy of crystalline solids: A lattice-switch Monte Carlo method [J].
Bruce, AD ;
Wilding, NB ;
Ackland, GJ .
PHYSICAL REVIEW LETTERS, 1997, 79 (16) :3002-3005
[6]   Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems [J].
Crooks, GE .
JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) :1481-1487
[7]  
CROOKS GE, 1999, THESIS UC BERKELEY
[8]   Optimized free-energy evaluation using a single reversible-scaling simulation [J].
de Koning, M ;
Antonelli, A ;
Yip, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :3973-3977
[9]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [10.1137/1.9781611970319, DOI 10.1137/1.9781611970319]
[10]  
FRENKEL D, 1996, UNDERSTANDING MOL SI, pCH7