Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting

被引:40
作者
Lin, Chia-Chien [1 ]
Wei, Te-Yu [1 ]
Lee, Kuan-Ting [1 ]
Lu, Shih-Yuan [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan
关键词
VISIBLE-LIGHT; HYDROGEN-PRODUCTION; SILICA AEROGEL; SOL-GEL; COMPOSITE AEROGELS; THIN-FILMS; H-2; PHOTOLUMINESCENCE; SENSITIZATION; PARTICLES;
D O I
10.1039/c1jm11992c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The highly porous, three-dimensionally well-connected through-pore structure of TiO2 aerogels is proven a superior material form for applications in photocatalytic water splitting for hydrogen production. At the reaction temperature of 30 degrees C, the specific hydrogen evolution rate achieved by the TiO2 aerogel is 3.40 and 9.63 times those obtained by hydrothermally prepared TiO2 nanocrystals and commercial P25 TiO2 nanoparticles, respectively. Decoration of Pt nanocrystals onto the backbone of the TiO2 aerogel leads to a one-order of magnitude improvement in hydrogen evolution rate over the plain TiO2 aerogel. Two methods are developed for the Pt decoration: a polyol process and an immersion-calcination-reduction process. The latter produces smaller sized Pt nanocrystals of around 1.9 nm, versus 4.7 nm from the polyol process, and achieves the same level of maximum specific hydrogen evolution rates as the polyol process at only a 1/10 Pt loading.
引用
收藏
页码:12668 / 12674
页数:7
相关论文
共 44 条
[1]   Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible [J].
Bao, Ningzhong ;
Shen, Liming ;
Takata, Tsuyoshi ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2008, 20 (01) :110-117
[2]   Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors [J].
Baumann, TF ;
Gash, AE ;
Chinn, SC ;
Sawvel, AM ;
Maxwell, RS ;
Satcher, JH .
CHEMISTRY OF MATERIALS, 2005, 17 (02) :395-401
[3]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2 [J].
Chiarello, Gian Luca ;
Forni, Lucio ;
Selli, Elena .
CATALYSIS TODAY, 2009, 144 (1-2) :69-74
[6]   TIO2 AEROGELS FOR PHOTOCATALYTIC DECONTAMINATION OF AQUATIC ENVIRONMENTS [J].
DAGAN, G ;
TOMKIEWICZ, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (49) :12651-12655
[7]   Restacked perovskite nanosheets and their Pt-loaded materials as photocatalysts [J].
Ebina, Y ;
Sasaki, T ;
Harada, M ;
Watanabe, M .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4390-4395
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   Mesoporous TiO2: Comparison of Classical Sol-Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction [J].
Hartmann, Pascal ;
Lee, Doh-Kwon ;
Smarsly, Bernd M. ;
Janek, Juergen .
ACS NANO, 2010, 4 (06) :3147-3154