Computing geodesics on triangular meshes

被引:71
作者
Martínez, D
Velho, L
Carvalho, PC
机构
[1] IMPA, Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] ICIMAF Inst Cibernet Matemat & Fis, Havana, Cuba
来源
COMPUTERS & GRAPHICS-UK | 2005年 / 29卷 / 05期
关键词
shortest geodesic; manifold triangulation; curve evolution;
D O I
10.1016/j.cag.2005.08.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new algorithm to compute a geodesic path over a triangulated surface. Based on Sethian's Fast Marching Method and Polthier's straightest geodesics theory, we are able to generate an iterative process to obtain a good discrete geodesic approximation. It can handle both convex and non-convex surfaces. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:667 / 675
页数:9
相关论文
共 13 条
[1]  
Aleksandrov A.D., 1967, TRANSLATION MATH MON, V15
[2]  
CHEN JD, 1990, PROCEEDINGS OF THE SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, P360, DOI 10.1145/98524.98601
[3]  
do Carmo P., 1976, Differential Geometry of Curves and Surfaces
[4]  
Floater M, 2002, TUTORIALS ON MULTIRESOLUTION IN GEOMETRIC MODELLING, P287
[5]  
Kapoor S., 1999, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, P770, DOI 10.1145/301250.301449
[6]   Computing geodesic paths on manifolds [J].
Kimmel, R ;
Sethian, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (15) :8431-8435
[7]  
MARTINEZ D, UNPUB PROOF CONVERGE
[8]   THE DISCRETE GEODESIC PROBLEM [J].
MITCHELL, JSB ;
MOUNT, DM ;
PAPADIMITRIOU, CH .
SIAM JOURNAL ON COMPUTING, 1987, 16 (04) :647-668
[9]  
Polthier K., 1999, DATA VISUALIZATION
[10]  
Polthier Konrad, 1998, Mathematical Visualization: Algorithms, Applications and Numerics, P135