Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications

被引:74
作者
Sukchawalit, R
Loprasert, S
Atichartpongkul, S
Mongkolsuk, S
机构
[1] Chulabhorn Res Inst, Biotechnol Lab, Bangkok 10210, Thailand
[2] Mahidol Univ, Fac Sci, Dept Biotechnol, Bangkok 10400, Thailand
关键词
D O I
10.1128/JB.183.15.4405-4412.2001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Analysis of the sequence immediate upstream of ohr revealed an open reading frame, designated ohrR, with the potential to encode a 17-kDa peptide with moderate amino acid sequence homology to the MarR family of negative regulators of gene expression. ohrR was transcribed as bicistronic mRNA with ohr, while ohr mRNA was found to be 95% monocistronic and 5% bicistronic with ohrR. Expression of both genes was induced by tert-butyl hydroperoxide (tBOOH) treatment. High-level expression of ohrR negatively regulated ohr expression. This repression could be overcome by tBOOH treatment. In vivo promoter analysis showed that the ohr R promoter (P1) has organic peroxide-inducible, strong activity, while the ohr promoter (P2) has constitutive, weak activity. Only P1 is autoregulated by OhrR. ohr primer extension results revealed three major primer extension products corresponding to the 5 ' ends of ohr mRNA, and their levels were strongly induced by tBOOH treatment. Sequence analysis of regions upstream of these sites showed no typical Xanthomonas promoter. Instead, the regions can form a stem-loop secondary structure with the 5 ' ends of ohr mRNA located in the loop section. The secondary structure resembles the structure recognized and processed by RNase III enzyme. These findings suggest that the P1 promoter is responsible for tBOOH-induced expression of the ohrR-ohr operon. The bicistronic mRNA is then processed by RNase III-like enzymes to give high levels of ohr mRNA, while ohrR mRNA is rapidly degraded.
引用
收藏
页码:4405 / 4412
页数:8
相关论文
共 32 条
[1]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[2]   The mar regulon:: multiple resistance to antibiotics and other toxic chemicals [J].
Alekshun, MN ;
Levy, SB .
TRENDS IN MICROBIOLOGY, 1999, 7 (10) :410-413
[3]   FUNCTIONAL AND STRUCTURAL ELEMENTS OF THE MESSENGER-RNA OF THE CIII GENE OF BACTERIOPHAGE-LAMBDA [J].
ALTUVIA, S ;
KORNITZER, D ;
KOBI, S ;
OPPENHEIM, AB .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 218 (04) :723-733
[4]  
ATICHARTPONGKUL S, MICROBIOLOGY, V147, P1775
[5]   ACTIVE OXYGEN IN PLANT PATHOGENESIS [J].
BAKER, CJ ;
ORLANDI, EW .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1995, 33 :299-321
[6]   SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages [J].
Buchmeier, N ;
Bossie, S ;
Chen, CY ;
Fang, FC ;
Guiney, DG ;
Libby, SJ .
INFECTION AND IMMUNITY, 1997, 65 (09) :3725-3730
[7]   CLONING AND SEQUENCING OF THIOL-SPECIFIC ANTIOXIDANT FROM MAMMALIAN BRAIN - ALKYL HYDROPEROXIDE REDUCTASE AND THIOL-SPECIFIC ANTIOXIDANT DEFINE A LARGE FAMILY OF ANTIOXIDANT ENZYMES [J].
CHAE, HZ ;
ROBISON, K ;
POOLE, LB ;
CHURCH, G ;
STORZ, G ;
RHEE, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :7017-7021
[8]   BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member [J].
Egland, PG ;
Harwood, CS .
JOURNAL OF BACTERIOLOGY, 1999, 181 (07) :2102-2109
[9]  
FAUNGTHONG M, IN PRESS J BACTERIOL
[10]   Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli [J].
GonzalezFlecha, B ;
Demple, B .
JOURNAL OF BACTERIOLOGY, 1997, 179 (02) :382-388