Support vector fuzzy regression machines

被引:108
作者
Hong, DH
Hwang, CH
机构
[1] Catholic Univ Daegu, Sch Mech & Automat Engn, Kyongsan 712702, Kyungbuk, South Korea
[2] Catholic Univ Daegu, Dept Stat Informat, Kyungbuk 712702, South Korea
关键词
fuzzy inference systems; support vector machine; fuzzy regression; fuzzy system models;
D O I
10.1016/S0165-0114(02)00514-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems. In this paper, we introduce the use of SVM for multivariate fuzzy linear and nonlinear regression models. Using the basic idea underlying SVM for multivariate fuzzy regressions gives computational efficiency of getting solutions. (C) 2002 Elsevier B.V. All rights reserved.
引用
收藏
页码:271 / 281
页数:11
相关论文
共 18 条
[1]  
[Anonymous], ANAL FUZZY INFORM
[2]  
[Anonymous], 1998, ISIS TECH REP
[3]  
[Anonymous], 1980, THEORY APPL FUZZY SE
[4]  
BOSER BE, 1992, 5 ANN WORKSH COMP LE
[5]   Linear and non-linear fuzzy regression: Evolutionary algorithm solutions [J].
Buckley, JJ ;
Feuring, T .
FUZZY SETS AND SYSTEMS, 2000, 112 (03) :381-394
[6]   Multivariate non-linear fuzzy regression: An evolutionary algorithm approach [J].
Buckley, JJ ;
Feuring, T ;
Hayashi, Y .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1999, 7 (02) :83-98
[7]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[8]   A PRACTICAL APPROACH TO NONLINEAR FUZZY REGRESSION [J].
CELMINS, A .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (03) :521-546
[9]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[10]   FUZZY LEAST-SQUARES [J].
DIAMOND, P .
INFORMATION SCIENCES, 1988, 46 (03) :141-157