Attractors for lattice dynamical systems

被引:243
作者
Bates, PW [1 ]
Lu, KN
Wang, BX
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Tsinghua Univ, Dept Appl Math, Beijing 100084, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2001年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0218127401002031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior of solutions for lattice dynamical systems. We first prove asymptotic compactness and then establish the existence of global attractors. The upper semicontinuity of the global attractor is also obtained when the lattice differential equations are approached by finite-dimensional systems.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 32 条
[11]  
CHOW SN, 1996, RANDOM COMPUT DYN, V4, P109
[12]   CELLULAR NEURAL NETWORKS - APPLICATIONS [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1273-1290
[13]   CELLULAR NEURAL NETWORKS - THEORY [J].
CHUA, LO ;
YANG, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (10) :1257-1272
[14]   THE CNN PARADIGM [J].
CHUA, LO ;
ROSKA, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1993, 40 (03) :147-156
[15]   Edge of chaos and local activity domain of FitzHugh-Nagumo equation [J].
Dogaru, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02) :211-257
[16]   PROPAGATING WAVES IN DISCRETE BISTABLE REACTION-DIFFUSION SYSTEMS [J].
ERNEUX, T ;
NICOLIS, G .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) :237-244
[17]  
FEIREISL E, 1994, CR ACAD SCI I-MATH, V319, P147
[18]   Global attractors for degenerate parabolic equations on unbounded domains [J].
Feireisl, E ;
Laurencot, P ;
Simondon, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (02) :239-261
[19]  
Hale J. K., 1988, Asymptotic Behavior of Dissipative Systems
[20]  
KAPVAL R, 1991, J MATH CHEM, V6, P113