Myosin Va and microtubule-based motors are required for fast axonal retrograde transport of tetanus toxin in motor neurons

被引:67
作者
Lalli, G
Gschmeissner, S
Schiavo, G
机构
[1] Canc Res UK, London Res Inst, Lincolns Inn Fields Labs, Mol Neuropathobiol Lab, London WC2A 3PX, England
[2] Canc Res UK, London Res Inst, Lincolns Inn Fields Labs, Electron Microscopy Unit, London WC2A 3PX, England
关键词
axonal transport; motor neuron; myosin Va; neuronal cytoskeleton; tetanus toxin;
D O I
10.1242/jcs.00727
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Using a novel assay based on the sorting and transport of a fluorescent fragment of tetanus toxin, we have investigated the cytoskeletal and motor requirements of axonal retrograde transport in living mammalian motor neurons. This essential process ensures the movement of neurotrophins and organelles from the periphery to the cell body and is crucial for neuronal survival. Unlike what is observed in sympathetic neurons, fast retrograde transport in motor neurons requires not only intact microtubules, but also actin microfilaments. Here, we show that the movement of tetanus toxin-containing carriers relies on the nonredundant activities of dynein as well as kinesin family members. Quantitative kinetic analysis indicates a role for dynein as the main motor of these carriers. Moreover, this approach suggests the involvement of myosin(s) in retrograde movement. Immunofluorescence screening with isoform-specific myosin antibodies reveals colocalization of tetanus toxin-containing retrograde carriers with myosin Va. Motor neurons from homozygous myosin Va null mice showed slower retrograde transport compared with wildtype cells, establishing a unique role for myosin Va in this process. On the basis of our findings, we propose that coordination of myosin Va and microtubule-dependent motors is required for fast axonal retrograde transport in motor neurons.
引用
收藏
页码:4639 / 4650
页数:12
相关论文
共 72 条
[51]   Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons [J].
Nakata, T ;
Terada, S ;
Hirokawa, N .
JOURNAL OF CELL BIOLOGY, 1998, 140 (03) :659-674
[52]   The role of myosin in vesicle transport during bovine chromaffin cell secretion [J].
Neco, P ;
Gil, A ;
Francés, MDM ;
Viniegra, S ;
Gutiérrez, LM .
BIOCHEMICAL JOURNAL, 2002, 368 :405-413
[53]  
PARTON RG, 1987, J NEUROCHEM, V49, P1057
[54]   DYNEIN ATPASE IS INHIBITED SELECTIVELY IN VITRO BY ERYTHRO-9-[3-2-(HYDROXYNONYL)]ADENINE [J].
PENNINGROTH, SM ;
CHEUNG, A ;
BOUCHARD, P ;
GAGNON, C ;
BARDIN, CW .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1982, 104 (01) :234-240
[55]   Brain myosin V is a synaptic vesicle-associated motor protein: Evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex [J].
Prekeris, R ;
Terrian, DM .
JOURNAL OF CELL BIOLOGY, 1997, 137 (07) :1589-1601
[56]   Mutant dynactin in motor neuron disease [J].
Puls, I ;
Jonnakuty, C ;
LaMonte, BH ;
Holzbaur, ELF ;
Tokito, M ;
Mann, E ;
Floeter, MK ;
Bidus, K ;
Drayna, D ;
Oh, SJ ;
Brown, RH ;
Ludlow, CL ;
Fischbeck, KH .
NATURE GENETICS, 2003, 33 (04) :455-456
[57]   Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density [J].
Rao, MV ;
Engle, LJ ;
Mohan, PS ;
Yuan, AD ;
Qiu, DK ;
Cataldo, A ;
Hassinger, L ;
Jacobsen, S ;
Lee, VMY ;
Andreadis, A ;
Julien, JP ;
Bridgman, PC ;
Nixon, RA .
JOURNAL OF CELL BIOLOGY, 2002, 159 (02) :279-289
[58]   Signalling events regulating the retrograde axonal transport of 125I-β Nerve growth factor in vivo [J].
Reynolds, AJ ;
Bartlett, SE ;
Hendry, IA .
BRAIN RESEARCH, 1998, 798 (1-2) :67-74
[59]   Membrane trafficking, organelle transport, and the cytoskeleton [J].
Rogers, SL ;
Gelfand, VI .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (01) :57-62
[60]   Myosin cooperates with microtubule motors during organelle transport in melanophores [J].
Rogers, SL ;
Gelfand, VI .
CURRENT BIOLOGY, 1998, 8 (03) :161-164