Polyethylenimine-based non-viral gene delivery systems

被引:876
作者
Lungwitz, U [1 ]
Breunig, M [1 ]
Blunk, T [1 ]
Göpferich, A [1 ]
机构
[1] Univ Regensburg, Dept Pharm & Chem, Pharmaceut Technol Unit, D-93053 Regensburg, Germany
关键词
polyethylenimine; PEI; intracellular trafficking; endosomolytic peptides; nuclear targeting; cell targeting;
D O I
10.1016/j.ejpb.2004.11.011
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Gene therapy has become a promising strategy for the treatment of many inheritable or acquired diseases that are currently considered incurable. Non-viral vectors have attracted great interest, as they are simple to prepare, rather stable, easy to modify and relatively safe, compared to viral vectors. Unfortunately, they also suffer from a lower transfection efficiency, requiring additional effort for their optimization. The cationic polymer polyethylenimine (PEI) has been widely used for non-viral transfection in vitro and in vivo and has an advantage over other polycations in that it combines strong DNA compaction capacity with an intrinsic endosomolytic activity. Here, we dive some insight into strategies developed for PEI-based non-viral vectors to overcome intracellular obstacles, including the improvement of methods for polyplex preparation and the incorporation of endosomolytic agents or nuclear localization signals. In recent years, PEI-based non-viral vectors have been locally or systemically delivered, mostly to target gene delivery to tumor tissue, the lung or liver. This requires strategies to efficiently shield transfection polyplexes against non-specific interaction with blood components, extracellular matrix and untargeted cells and the attachment of targeting moieties, which allow for the directed gene delivery to the desired cell or tissue. In this context, materials, facilitating the design of novel PEI-based non-viral vectors are described. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:247 / 266
页数:20
相关论文
共 209 条
[1]   A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine [J].
Abdallah, B ;
Hassan, A ;
Benoist, C ;
Goula, D ;
Behr, JP ;
Demeneix, BA .
HUMAN GENE THERAPY, 1996, 7 (16) :1947-1954
[2]   IDENTIFICATION OF CYTOSOLIC FACTORS REQUIRED FOR NUCLEAR LOCATION SEQUENCE-MEDIATED BINDING TO THE NUCLEAR-ENVELOPE [J].
ADAM, EJH ;
ADAM, SA .
JOURNAL OF CELL BIOLOGY, 1994, 125 (03) :547-555
[3]   Biodegradable poly (ethylenimine) for plasmid DNA delivery [J].
Ahn, CH ;
Chae, SY ;
Bae, YH ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 2002, 80 (1-3) :273-282
[4]   Delivery of unmodified bioactive ribozymes by an RNA-stabilizing polyethylenimine (LMW-PEI) efficiently down-regulates gene expression [J].
Aigner, A ;
Fischer, D ;
Merdan, T ;
Brus, C ;
Kissel, T ;
Czubayko, F .
GENE THERAPY, 2002, 9 (24) :1700-1707
[5]   Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity [J].
Aoki, K ;
Furuhata, S ;
Hatanaka, K ;
Maeda, M ;
Remy, JS ;
Behr, JP ;
Terada, M ;
Yoshida, T .
GENE THERAPY, 2001, 8 (07) :508-514
[6]   Expression of a mannose/fucose membrane lectin on human dendritic cells [J].
Avrameas, A ;
McIlroy, D ;
Hosmalin, A ;
Autran, B ;
Debre, P ;
Monsigny, M ;
Roche, AC ;
Midoux, P .
EUROPEAN JOURNAL OF IMMUNOLOGY, 1996, 26 (02) :394-400
[7]   Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery [J].
Baker, A ;
Saltik, M ;
Lehrmann, H ;
Killisch, I ;
Mautner, V ;
Lamm, G ;
Christofori, G ;
Cotten, M .
GENE THERAPY, 1997, 4 (08) :773-782
[8]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[9]   Nucleotide exchange in genomic DNA of rat hepatocytes using RNA/DNA oligonucleotides - Targeted delivery of liposomes and polyethyleneimine to the asialoglycoprotein receptor [J].
Bandyopadhyay, P ;
Ma, XM ;
Linehan-Stieers, C ;
Kren, BT ;
Steer, CJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :10163-10172
[10]   GENE-TRANSFER WITH SYNTHETIC CATIONIC AMPHIPHILES - PROSPECTS FOR GENE-THERAPY [J].
BEHR, JP .
BIOCONJUGATE CHEMISTRY, 1994, 5 (05) :382-389