On synchronization of unified chaotic systems via nonlinear Control

被引:71
作者
Park, JH [1 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, Robust Control & Nonlinear Dynam Lab, Kyongsan 712749, South Korea
关键词
D O I
10.1016/j.chaos.2004.11.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a simple but efficient nonlinear control method is applied to the synchronization of unified chaotic systems using the Lyapunov method. A numerical example is given to illuminate the design procedure and advantage of the result derived. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:699 / 704
页数:6
相关论文
共 20 条
[1]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[2]  
Chen G., 1998, CHAOS ORDER
[3]   On some controllability conditions for chaotic dynamics control [J].
Chen, GR .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1461-1470
[4]   Global chaos synchronization of new chaotic systems via nonlinear control [J].
Chen, HK .
CHAOS SOLITONS & FRACTALS, 2005, 23 (04) :1245-1251
[5]   Controlling and synchronizing chaotic Genesio system via nonlinear feedback control [J].
Chen, MY ;
Han, ZZ .
CHAOS SOLITONS & FRACTALS, 2003, 17 (04) :709-716
[6]  
Chua L. O., 1993, Journal of Circuits, Systems and Computers, V3, P93, DOI 10.1142/S0218126693000071
[7]   A linear continuous feedback control of Chua's circuit [J].
Hwang, CC ;
Hsieh, JY ;
Lin, RS .
CHAOS SOLITONS & FRACTALS, 1997, 8 (09) :1507-1515
[8]   Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems [J].
Li, D ;
Lu, JA ;
Wu, XQ .
CHAOS SOLITONS & FRACTALS, 2005, 23 (01) :79-85
[9]   Chaotic behavior in first-order autonomous continuous-time systems with delay [J].
Lu, HT ;
He, ZY .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1996, 43 (08) :700-702
[10]   Synchronization of a unified chaotic system and the application in secure communication [J].
Lu, J ;
Wu, XQ ;
Lü, JH .
PHYSICS LETTERS A, 2002, 305 (06) :365-370