nextnano: General purpose 3-D simulations

被引:541
作者
Birner, Stefan [1 ]
Zibold, Tobias
Andlauer, Till
Kubis, Tillmann
Sabathil, Matthias
Trellakis, Alex
Vogl, Peter
机构
[1] Tech Univ Munich, Walter Schottky Inst, Theoret Semicond Phys Grp, D-85748 Garching, Germany
[2] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany
关键词
carrier transport; electronic structure; magnetic field; quantum; quantum wire; simulation; technology computer-aided design (TCAD);
D O I
10.1109/TED.2007.902871
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
next nano is a semiconductor nanodevice simulation tool that has been developed for predicting and understanding a wide range of electronic and optical properties of semiconductor nanostructures. The underlying idea is to provide a robust and generic framework for modeling device applications in the field of nanosized semiconductor heterostructures. The simulator deals with realistic geometries and almost any relevant combination of materials in one, two, and three spatial dimensions. It focuses on an accurate and reliable treatment of quantum mechanical effects and provides a self-consistent solution of the Schrodinger, Poisson, and current equations. Exchange-correlation effects are taken into account in terms of the local density scheme. The electronic structure is represented within the single-band or multiband k center dot p envelope function approximation, including strain. The code is not intended to be a "black box" tool. It requires a good understanding of quantum mechanics. The input language provides a number of tools that simplify setting up device geometry or running repetitive tasks. In this paper, we present a brief overview of nextnano and present four examples that demonstrate the wide range of possible applications for this software in the fields of solid-state quantum computation, nanoelectronics, and optoelectronics, namely, 1) a realization of a qubit based on coupled quantum wires in a magnetic field, 2) and 3) carrier transport in two different nano-MOSFET devices, and 4) a quantum cascade laser.
引用
收藏
页码:2137 / 2142
页数:6
相关论文
共 25 条
[1]   Modeling of semiconductor nanostructures with nextnano3 [J].
Birner, S. ;
Hackenbuchner, S. ;
Sabathil, M. ;
Zandler, G. ;
Majewski, J. A. ;
Andlauer, T. ;
Zibold, T. ;
Morschl, R. ;
Trellakis, A. ;
Vogl, P. .
ACTA PHYSICA POLONICA A, 2006, 110 (02) :111-124
[2]   SYMMETRY OF ELECTRICAL-CONDUCTION [J].
BUTTIKER, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1988, 32 (03) :317-334
[3]   Analysis of transport properties of tetrahertz quantum cascade lasers [J].
Callebaut, H ;
Kumar, S ;
Williams, BS ;
Hu, Q ;
Reno, JL .
APPLIED PHYSICS LETTERS, 2003, 83 (02) :207-209
[4]  
Datta S, 1997, ELECT TRANSPORT MESO
[5]   THEORY OF ZENER TUNNELING AND WANNIER-STARK STATES IN SEMICONDUCTORS [J].
DICARLO, A ;
VOGL, P ;
POTZ, W .
PHYSICAL REVIEW B, 1994, 50 (12) :8358-8377
[6]   Hole mobility and thermal velocity enhancement for uniaxial stress in Si up to 4 GPa [J].
Fan, Xiao-Feng ;
Register, Leonard Franklin ;
Winstead, Brian ;
Foisy, Maik C. ;
Chen, Wanqiang ;
Zheng, Xin ;
Ghosh, Bahniman ;
Banerjee, Sanjay K. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (02) :291-296
[7]  
FIORI G, 2005, P 6 EUR C ULIS BOLOG, P163
[8]   Tunnel-coupled one-dimensional electron systems with large subband separations [J].
Fischer, S. F. ;
Apetrii, G. ;
Kunze, U. ;
Schuh, D. ;
Abstreiter, G. .
PHYSICAL REVIEW B, 2006, 74 (11)
[9]   Gauge-invariant grid discretization of the Schrodinger equation [J].
Governale, M ;
Ungarelli, C .
PHYSICAL REVIEW B, 1998, 58 (12) :7816-7821
[10]  
Hackenbuchner S., 2002, SELECTED TOPICS SEMI, V48