Single wavelets in n-dimensions

被引:27
作者
Soardi, PM
Weiland, D
机构
[1] Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
Tight Frame; Orthonormal Wavelet; Wavelet Family; Dyadic Wavelet; Orthonormal Wavelet Basis;
D O I
10.1007/BF02476029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under very minimal regularity assumptions, it can be shown that 2(n) - 1 functions are needed to generate an orthonormal wavelet basis for L-2(R-n). In a recent paper by Dai et al. it is shown, by abstract means, that there exist subsets K of R-n such that the single function psi, defined by <(psi)over cap> = chi(K), is an orthonormal wavelet for L-2(R-n). Here we provide methods for constructing explicit examples of these sets. Moreover; we demonstrate that these wavelets do not behave like their one-dimensional counterparts.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 11 条
[1]   SOLUTION OF 2 PROBLEMS ON WAVELETS [J].
AUSCHER, P .
JOURNAL OF GEOMETRIC ANALYSIS, 1995, 5 (02) :181-236
[2]  
DAI X, WAVELET SETS RN
[3]  
Fang X., 1996, J. Fourier Anal. Appl., V2, P315
[4]  
FRAZIER M, CHARACTERIZATION FUN
[5]  
GARRIGOS G, 1996, COMMUNICATION
[6]  
GRIPENBERG G, 1995, STUD MATH, V114, P207
[7]  
Hernandez E., 1996, 1 COURSE WAVELETS
[8]  
Hernandez E., 1996, J. Fourier Anal. Appl., V2, P329
[9]  
Meyer Y., 1990, ONDELETTES OPERATEUR
[10]  
RON A, AFFINE SYSTEMS L2 RD