Bone marrow-derived cells are involved in the pathogenesis of cardiac hypertrophy in response to pressure overload

被引:46
作者
Endo, Jin
Sano, Motoaki
Fujita, Jun
Hayashida, Kentaro
Yuasa, Shinsuke
Aoyama, Naoki
Takehara, Yuji
Kato, Osamu
Makino, Shinji
Ogawa, Satoshi
Fukuda, Keiichi
机构
[1] Keio Univ, Sch Med, Dept Regenerat Med & Adv Cardiac Therapeut, Shinjuku Ku, Tokyo 1608582, Japan
[2] Keio Univ, Sch Med, Div Cardiol, Dept Internal Med, Tokyo 1608582, Japan
[3] Kato Lafys Clin, Adv Med Res Inst Fertil, Tokyo, Japan
关键词
hypertrophy; cell fusion; bone marrow; fibroblasts;
D O I
10.1161/CIRCULATIONAHA.106.650903
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Bone marrow ( BM) cells possess broad differentiation potential and can form various cell lineages in response to pathophysiological cues. The present study investigated whether BM-derived cells contribute to the pathogenesis of cardiac hypertrophy, as well as the possible cellular mechanisms involved in such a role. Methods and Results-Lethally irradiated wild-type mice were transplanted with BM cells from enhanced green fluorescent protein-transgenic mice. The chimeric mice were subjected to either prolonged hypoxia or transverse aortic constriction. BM-derived enhanced green fluorescent protein-expressing cardiomyocytes increased in number over time, emerging predominantly in the pressure-overloaded ventricular myocardium, although they constituted < 0.01% of recipient cardiomyocytes. To determine whether BM-derived cardiomyocytes were derived from cell fusion or transdifferentiation at the single-cell level, lethally irradiated Cre mice were transplanted with BM cells from the double-conditional Cre reporter mouse line Z/EG. BM-derived cardiomyocytes were shown to arise from both cell fusion and transdifferentiation. Interestingly, BM-derived myofibroblasts expressing both vimentin and alpha-smooth muscle actin were concentrated in the perivascular fibrotic area. These cells initially expressed MAC-1/CD14 but lost expression of these markers during the chronic phase, which suggests that they were derived from monocytes. A similar phenomenon occurred in cultured human monocytes, most of which ultimately expressed vimentin and alpha-smooth muscle actin. Conclusions-We found that BM-derived cells were involved in the pathogenesis of cardiac hypertrophy via the dual mechanisms of cell fusion and transdifferentiation. Moreover, the present results suggest that BM-derived monocytes accumulating in the perivascular space might play an important role in the formation of perivascular fibrosis via direct differentiation into myofibroblasts.
引用
收藏
页码:1176 / 1184
页数:9
相关论文
共 38 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium [J].
Balsam, LB ;
Wagers, AJ ;
Christensen, JL ;
Kofidis, T ;
Weissman, IL ;
Robbins, RC .
NATURE, 2004, 428 (6983) :668-673
[3]   Adult cardiac stem cells are multipotent and support myocardial regeneration [J].
Beltrami, AP ;
Barlucchi, L ;
Torella, D ;
Baker, M ;
Limana, F ;
Chimenti, S ;
Kasahara, H ;
Rota, M ;
Musso, E ;
Urbanek, K ;
Leri, A ;
Kajstura, J ;
Nadal-Ginard, B ;
Anversa, P .
CELL, 2003, 114 (06) :763-776
[4]   Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart [J].
Cai, CL ;
Liang, XQ ;
Shi, YQ ;
Chu, PH ;
Pfaff, SL ;
Chen, J ;
Evans, S .
DEVELOPMENTAL CELL, 2003, 5 (06) :877-889
[5]   Role of apoptosis in ventricular remodeling. [J].
Chandrashekhar Y. .
Current Heart Failure Reports, 2005, 2 (1) :18-22
[6]   Unchain my heart: the scientific foundations of cardiac repair [J].
Dimmeler, S ;
Zeiher, AM ;
Schneider, MD .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (03) :572-583
[7]   Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-tranplanted mice [J].
Direkze, NC ;
Forbes, SJ ;
Brittan, M ;
Hunt, T ;
Jeffery, R ;
Preston, SL ;
Poulsom, R ;
Hodivala-Dilke, K ;
Alison, MR ;
Wright, NA .
STEM CELLS, 2003, 21 (05) :514-520
[8]   Anti-monocyte chemoattractant protein-1 gene therapy inhibits vascular remodeling in rats: blockade of MCP-1 activity after intramuscular transfer of a mutant gene inhibits vascular remodeling induced by chronic blockade of NO synthesis [J].
Egashira, K ;
Koyanagi, M ;
Kitamoto, S ;
Ni, WH ;
Kataoka, C ;
Morishita, R ;
Kaneda, Y ;
Akiyama, C ;
Nishida, KI ;
Sueishi, K ;
Takeshita, A .
FASEB JOURNAL, 2000, 14 (13) :1974-1978
[9]   A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis [J].
Forbes, SJ ;
Russo, FP ;
Rey, V ;
Burra, P ;
Rugge, M ;
Wright, NA ;
Alison, MR .
GASTROENTEROLOGY, 2004, 126 (04) :955-963
[10]   Lack of a fusion requirement for development of bone marrow-derived epithelia [J].
Harris, RG ;
Herzog, EL ;
Bruscia, EM ;
Grove, JE ;
Van Arnam, JS ;
Krause, DS .
SCIENCE, 2004, 305 (5680) :90-93