Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues

被引:266
作者
Giri, Bhoopander [1 ]
Kapoor, Rupam [1 ]
Mukerji, K. G. [1 ]
机构
[1] Univ Delhi, Dept Bot, Delhi 110007, India
关键词
D O I
10.1007/s00248-007-9239-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m(-1)). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m(-1) salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m(-1)). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m(-1)), which lowered as salinity levels increased (6.5, 9.5 dS m(-1)), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.
引用
收藏
页码:753 / 760
页数:8
相关论文
共 46 条
[1]  
ABROL IP, 1986, RECLAM REVEG RES, V5, P65
[2]   A COMPARISON OF COLUMN-DISPLACEMENT AND CENTRIFUGE METHODS FOR OBTAINING SOIL SOLUTIONS [J].
ADAMS, F ;
BURMESTER, C ;
HUE, NV ;
LONG, FL .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1980, 44 (04) :733-735
[3]   Improvement of degraded physical properties of a saline-sodic soil by reclamation with kallar grass (Leptochloa fusca) [J].
Akhter, J ;
Murray, R ;
Mahmood, K ;
Malik, KA ;
Ahmed, S .
PLANT AND SOIL, 2004, 258 (1-2) :207-216
[4]   Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress [J].
Al-Karaki, GN ;
Hammad, R ;
Rusan, M .
MYCORRHIZA, 2001, 11 (01) :43-47
[5]   Growth of mycorrhizal tomato and mineral acquisition under salt stress [J].
Al-Karaki, GN .
MYCORRHIZA, 2000, 10 (02) :51-54
[6]   Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress [J].
Al-Karaki, GN ;
Clark, RB .
JOURNAL OF PLANT NUTRITION, 1998, 21 (02) :263-276
[7]  
ALLEN SE, 1989, CHEM ANAL ECOLOGICAL
[8]   OSMOTIC ADJUSTMENT IN LEAVES OF VA MYCORRHIZAL AND NONMYCORRHIZAL ROSE PLANTS IN RESPONSE TO DROUGHT STRESS [J].
AUGE, RM ;
SCHEKEL, KA ;
WAMPLE, RL .
PLANT PHYSIOLOGY, 1986, 82 (03) :765-770
[9]   PHOSPHORUS ENHANCEMENT OF SALT TOLERANCE OF TOMATO [J].
AWAD, AS ;
EDWARDS, DG ;
CAMPBELL, LC .
CROP SCIENCE, 1990, 30 (01) :123-128
[10]  
Bhandal I.S., 1988, INT REV CYTOL, V110, P205, DOI DOI 10.1016/S0074-7696(08)61851-3