A new matrix-free algorithm for the large-scale trust-region subproblem

被引:94
作者
Rojas, M
Santos, SA
Sorensen, DC
机构
[1] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
[2] Univ Estadual Campinas, Dept Appl Math, BR-13081970 Campinas, SP, Brazil
关键词
regularization; constrained quadratic optimization; trust region; Lanczos method;
D O I
10.1137/S105262349928887X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new method for the large-scale trust-region subproblem. The method is matrix-free in the sense that only matrix-vector products are required. We recast the trust-region subproblem as a parameterized eigenvalue problem and compute an optimal value for the parameter. We then nd the solution of the trust-region subproblem from the eigenvectors associated with two of the smallest eigenvalues of the parameterized eigenvalue problem corresponding to the optimal parameter. The new algorithm uses a different interpolating scheme than existing methods and introduces a uni ed iteration that naturally includes the so-called hard case. We show that the new iteration is well defined and convergent at a superlinear rate. We present computational results to illustrate convergence properties and robustness of the method.
引用
收藏
页码:611 / 646
页数:36
相关论文
共 20 条
  • [1] [Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
  • [2] GANDER W, 1991, NATO ADV SCI I F, V70, P677
  • [3] QUADRATICALLY CONSTRAINED LEAST-SQUARES AND QUADRATIC PROBLEMS
    GOLUB, GH
    VONMATT, U
    [J]. NUMERISCHE MATHEMATIK, 1991, 59 (06) : 561 - 580
  • [4] Solving the trust-region subproblem using the Lanczos method
    Gould, NIM
    Lucidi, S
    Roma, M
    Toint, PL
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (02) : 504 - 525
  • [5] HAGER WW, 1999, MINIMIZING QUADRATIC
  • [6] HEBDEN MD, 1973, 515 TP AT EN RES EST
  • [7] On some properties of quadratic programs with a convex quadratic constraint
    Lucidi, S
    Palagi, L
    Roma, M
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) : 105 - 122
  • [8] NUMERICAL-SOLUTION OF A SECULAR EQUATION
    MELMAN, A
    [J]. NUMERISCHE MATHEMATIK, 1995, 69 (04) : 483 - 493
  • [9] COMPUTING A TRUST REGION STEP
    MORE, JJ
    SORENSEN, DC
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (03): : 553 - 572
  • [10] PARLETT BN, 1980, SYMMETRIC EIGENVALUE