Universality in sandpiles

被引:91
作者
Chessa, A
Stanley, HE
Vespignani, A
Zapperi, S
机构
[1] Univ Cagliari, Dipartimento Fis, I-09124 Cagliari, Italy
[2] Univ Cagliari, Unita INFM, I-09124 Cagliari, Italy
[3] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy
[6] Ecole Super Phys & Chim Ind Ville Paris, PMMH, F-75231 Paris 05, France
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 01期
关键词
D O I
10.1103/PhysRevE.59.R12
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform extensive numerical simulations of different versions of the sandpile model. We find that previous claims about universality classes are unfounded, since the method previously employed to analyze the data suffered from a systematic bias. We identify the correct scaling behavior and provide evidences suggesting that sandpiles with stochastic and deterministic toppling rules belong to the same universality class. [S1063-651X(99)50701-0].
引用
收藏
页码:R12 / R15
页数:4
相关论文
共 27 条
[1]   Universality classes for rice-pile models [J].
Amaral, LAN ;
Lauritsen, KB .
PHYSICAL REVIEW E, 1997, 56 (01) :231-234
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]   Universality in sandpile models [J].
BenHur, A ;
Biham, O .
PHYSICAL REVIEW E, 1996, 53 (02) :R1317-R1320
[4]   Mean-field behavior of the sandpile model below the upper critical dimension [J].
Chessa, A ;
Marinari, E ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (06) :R6241-R6244
[5]   DYNAMIC AND SPATIAL-ASPECTS OF SANDPILE CELLULAR AUTOMATA [J].
CHRISTENSEN, K ;
FOGEDBY, HC ;
JENSEN, HJ .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (3-4) :653-684
[6]  
CILIBERTO S, 1994, J PHYS I, V4, P223, DOI 10.1051/jp1:1994134
[7]   Rare events and breakdown of simple scaling in the Abelian sandpile model [J].
De Menech, M ;
Stella, AL ;
Tebaldi, C .
PHYSICAL REVIEW E, 1998, 58 (03) :R2677-R2680
[8]   EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICAL PHENOMENA [J].
DHAR, D ;
RAMASWAMY, R .
PHYSICAL REVIEW LETTERS, 1989, 63 (16) :1659-1662
[9]   DYNAMIC RENORMALIZATION-GROUP APPROACH TO SELF-ORGANIZED CRITICAL PHENOMENA [J].
DIAZGUILERA, A .
EUROPHYSICS LETTERS, 1994, 26 (03) :177-182
[10]   Self-organized criticality as an absorbing-state phase transition [J].
Dickman, R ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW E, 1998, 57 (05) :5095-5105