Quantum gates and memory using microwave-dressed states

被引:209
作者
Timoney, N. [1 ]
Baumgart, I. [1 ]
Johanning, M. [1 ]
Varon, A. F. [1 ]
Plenio, M. B. [2 ]
Retzker, A. [2 ]
Wunderlich, Ch. [1 ]
机构
[1] Univ Siegen, Dept Phys, Fac Sci & Technol, D-57068 Siegen, Germany
[2] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
关键词
DECOHERENCE; SIMULATION;
D O I
10.1038/nature10319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Trapped atomic ions have been used successfully to demonstrate(1) basic elements of universal quantum information processing. Nevertheless, scaling up such methods to achieve large-scale, universal quantum information processing (or more specialized quantum simulations(2-5)) remains challenging. The use of easily controllable and stable microwave sources, rather than complex laser systems(6,7), could remove obstacles to scalability. However, the microwave approach has drawbacks: it involves the use of magnetic-field sensitive states, which shorten coherence times considerably, and requires large, stable magnetic field gradients. Here we show how to overcome both problems by using stationary atomic quantum states as qubits that are induced by microwave fields (that is, by dressing magnetic-field-sensitive states with microwave fields). This permits fast quantum logic, even in the presence of a small (effective) Lamb-Dicke parameter (and, therefore, moderate magnetic field gradients). We experimentally demonstrate the basic building blocks of this scheme, showing that the dressed states are long lived and that coherence times are increased by more than two orders of magnitude relative to those of bare magnetic-field-sensitive states. This improves the prospects of microwave-driven ion trap quantum information processing, and offers a route to extending coherence times in all systems that suffer from magnetic noise, such as neutral atoms, nitrogen-vacancy centres, quantum dots or circuit quantum electrodynamic systems.
引用
收藏
页码:185 / U83
页数:5
相关论文
共 31 条
[1]   Optimized dynamical decoupling in a model quantum memory [J].
Biercuk, Michael J. ;
Uys, Hermann ;
VanDevender, Aaron P. ;
Shiga, Nobuyasu ;
Itano, Wayne M. ;
Bollinger, John J. .
NATURE, 2009, 458 (7241) :996-1000
[2]   Entangled states of trapped atomic ions [J].
Blatt, Rainer ;
Wineland, David .
NATURE, 2008, 453 (7198) :1008-1015
[3]   Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs [J].
Bluhm, Hendrik ;
Foletti, Sandra ;
Neder, Izhar ;
Rudner, Mark ;
Mahalu, Diana ;
Umansky, Vladimir ;
Yacoby, Amir .
NATURE PHYSICS, 2011, 7 (02) :109-113
[4]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[5]   Superconducting quantum bits [J].
Clarke, John ;
Wilhelm, Frank K. .
NATURE, 2008, 453 (7198) :1031-1042
[6]   Simulating a quantum magnet with trapped ions [J].
Friedenauer, A. ;
Schmitz, H. ;
Glueckert, J. T. ;
Porras, D. ;
Schaetz, T. .
NATURE PHYSICS, 2008, 4 (10) :757-761
[7]   Quantum simulation of the Dirac equation [J].
Gerritsma, R. ;
Kirchmair, G. ;
Zaehringer, F. ;
Solano, E. ;
Blatt, R. ;
Roos, C. F. .
NATURE, 2010, 463 (7277) :68-U72
[8]   Robust entanglement [J].
Häffner, H ;
Schmidt-Kaler, F ;
Hänsel, W ;
Roos, CF ;
Körber, T ;
Chwalla, M ;
Riebe, M ;
Benhelm, J ;
Rapol, UD ;
Becher, C ;
Blatt, R .
APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 81 (2-3) :151-153
[9]   Self-learning estimation of quantum states [J].
Hannemann, T ;
Reiss, D ;
Balzer, C ;
Neuhauser, W ;
Toschek, PE ;
Wunderlich, C .
PHYSICAL REVIEW A, 2002, 65 (05) :4
[10]   Complete Methods Set for Scalable Ion Trap Quantum Information Processing [J].
Home, Jonathan P. ;
Hanneke, David ;
Jost, John D. ;
Amini, Jason M. ;
Leibfried, Dietrich ;
Wineland, David J. .
SCIENCE, 2009, 325 (5945) :1227-1230