Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury

被引:191
作者
Nakao, A
Kimizuka, K
Stolz, DB
Neto, JS
Kaizu, T
Choi, AMK
Uchiyama, T
Zuckerbraun, BS
Nalesnik, MA
Otterbein, LE
Murase, N
机构
[1] Univ Pittsburgh, Dept Surg, Thomas E Starzl Transplantat Inst, Ctr Med, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Ctr Biol Imaging, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15213 USA
[4] Univ Pittsburgh, Dept Pulm Allergy, Pittsburgh, PA 15213 USA
[5] Univ Pittsburgh, Dept Crit Care Med, Pittsburgh, PA 15213 USA
[6] Univ Pittsburgh, Dept Anesthesiol & Crit Care Med, Pittsburgh, PA 15213 USA
[7] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15213 USA
关键词
D O I
10.1016/S0002-9440(10)63515-8
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Carbon monoxide (CO), a byproduct of heme catalysis by heme oxygenases, has been shown to exert anti-inflammatory effects. This study examines the cytoprotective efficacy of inhaled CO during intestinal cold ischemia/reperfusion injury associated with small intestinal transplantation. Orthotopic syngenic intestinal transplantation was performed in Lewis rats after 6 hours of cold preservation in University of Wisconsin solution. Three groups were examined: normal untreated controls, control intestinal transplant recipients kept in room air, and recipients exposed to CO (250 ppm) for 1 hour before and 24 hours after surgery. In air grafts, mRNA levels for interleukin-6, cyclooxygenase-2, intracellular adhesion molecule (ICAM-1), and inducible nitric oxide synthase rapidly increased after intestinal transplant. Histopathological. analysis revealed severe mucosal erosion, villous congestion, and inflammatory infiltrates. CO effectively blocked an early up-regulation of these mediators, showed less severe histopathological changes, and resulted in significantly improved animal survival of 92% from 58% in air-treated controls. CO also significantly reduced mRNA for proapoptotic Bax, while it up-regulated anti-apoptotic Bcl-2. These changes in CO-treated grafts correlated with well-preserved CD31(+) vascular endothelial cells, less frequent apoptosis/necrosis in intestinal epithelial and capillary endothelial cells, and improved graft tissue blood circulation. Protective effects of CO in this study were mediated via soluble guanylyl cyclase, because 1H-(1,2,4)oxadiazole (4,3-alpha) quinoxaline-1-one (soluble guanylyl cyclase inhibitor) completely reversed the beneficial effect conferred by CO. Perioperative CO inhalation at a low concentration resulted in protection against ischemia/reperfusion injury to intestinal grafts with prolonged cold preservation.
引用
收藏
页码:1587 / 1598
页数:12
相关论文
共 42 条
[1]  
Abu-Elmagd K, 2001, ANN SURG, V234, P404, DOI 10.1097/00000658-200109000-00014
[2]   Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury [J].
Amersi, F ;
Buelow, R ;
Kato, H ;
Ke, BB ;
Coito, AJ ;
Shen, XD ;
Zhao, DL ;
Zaky, J ;
Melinek, J ;
Lassman, CR ;
Kolls, JK ;
Alam, J ;
Ritter, T ;
Volk, HD ;
Farmer, DG ;
Ghobrial, RM ;
Busuttil, RW ;
Kupiec-Weglinski, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (11) :1631-1639
[3]   Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway [J].
Amersi, F ;
Shen, XD ;
Anselmo, D ;
Melinek, J ;
Iyer, S ;
Southard, DJ ;
Katori, M ;
Volk, HD ;
Busuttil, RW ;
Buelow, R ;
Kupiec-Weglinski, JW .
HEPATOLOGY, 2002, 35 (04) :815-823
[4]   Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning [J].
Bolli, R ;
Shinmura, K ;
Tang, XL ;
Kodani, E ;
Xuan, YT ;
Guo, YR ;
Dawn, B .
CARDIOVASCULAR RESEARCH, 2002, 55 (03) :506-519
[5]   Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis [J].
Brouard, S ;
Otterbein, LE ;
Anrather, J ;
Tobiasch, E ;
Bach, FH ;
Choi, AMK ;
Soares, MP .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (07) :1015-1025
[6]  
BRUNE B, 1987, MOL PHARMACOL, V32, P497
[7]   RESISTANCE OF ENDOTHELIAL-CELLS TO ANOXIA-REOXYGENATION IN ISOLATED GUINEA-PIG HEARTS [J].
BUDERUS, S ;
SIEGMUND, B ;
SPAHR, R ;
KRUTZFELDT, A ;
PIPER, HM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 257 (02) :H488-H493
[8]   Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration [J].
Chapman, HA .
CURRENT OPINION IN CELL BIOLOGY, 1997, 9 (05) :714-724
[9]   Heme oxygenase-1: Function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury [J].
Choi, AMK ;
Alam, J .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 1996, 15 (01) :9-19
[10]   PRESERVATION AND REPERFUSION INJURIES IN LIVER ALLOGRAFTS - AN OVERVIEW AND SYNTHESIS OF CURRENT STUDIES [J].
CLAVIEN, PA ;
HARVEY, PRC ;
STRASBERG, SM .
TRANSPLANTATION, 1992, 53 (05) :957-978