Fabrication of carbon nanotube reinforced alumina matrix nanocomposite by sol-gel process

被引:139
作者
Mo, CB [1 ]
Cha, SI [1 ]
Kim, KT [1 ]
Lee, KH [1 ]
Hong, SH [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2005年 / 395卷 / 1-2期
关键词
carbon nanotube; alumina; nanocomposite; sol-gel process; spark plasma sintering;
D O I
10.1016/j.msea.2004.12.031
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Carbon nanotube reinforced alumina matrix nanocomposite was fabricated by sol-gel process and followed by spark plasma sintering process. Homogeneous distribution of carbon nanotubes within alumina matrix can be obtained by mixing the carbon nanotubes with alumina sol and followed by condensation into gel. The mixed gel, consisting of alumina and carbon nanotubes, was dried and calcinated into carbon nanotube/alumina composite powders. The composite powders were spark plasma sintered into carbon nanotube reinforced alumina matrix nanocomposite. The hardness of carbon nanotube reinforced alumina matrix nanocomposite was enhanced due to an enhanced load sharing of homogeneously distributed carbon nanotubes. At the same time, the fracture toughness of carbon nanotube reinforced alumina matrix nanocomposite was enhanced due to a bridging effect of carbon nanotubes during crack propagation. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 128
页数:5
相关论文
共 13 条
[1]   REACTIONS OF PULSED-LASER-EVAPORATED AL WITH C AND C(2)H(2) - INFRARED-SPECTRA AND CASSCF CALCULATIONS FOR ALC, AL2C, AL2C2, AND ALC2H [J].
CHERTIHIN, GV ;
ANDREWS, L ;
TAYLOR, PR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (08) :3513-3518
[2]   Bending and buckling of carbon nanotubes under large strain [J].
Falvo, MR ;
Clary, GJ ;
Taylor, RM ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1997, 389 (6651) :582-584
[3]   Carbon nanotube-metal-oxide nanocomposites:: Microstructure, electrical conductivity and mechanical properties [J].
Flahaut, E ;
Peigney, A ;
Laurent, C ;
Marlière, C ;
Chastel, F ;
Rousset, A .
ACTA MATERIALIA, 2000, 48 (14) :3803-3812
[4]   Mechanical properties and microstructure of nano-SiC-Al2O3 composites densified by spark plasma sintering [J].
Gao, L ;
Wang, HZ ;
Hong, JS ;
Miyamoto, H ;
Miyamoto, K ;
Nishikawa, Y ;
Torre, SDDL .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (05) :609-613
[5]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[6]   Thermal transport measurements of individual multiwalled nanotubes [J].
Kim, P ;
Shi, L ;
Majumdar, A ;
McEuen, PL .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :215502-1
[7]   Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br [J].
Lee, RS ;
Kim, HJ ;
Fischer, JE ;
Thess, A ;
Smalley, RE .
NATURE, 1997, 388 (6639) :255-257
[8]   Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites [J].
Mamedov, AA ;
Kotov, NA ;
Prato, M ;
Guldi, DM ;
Wicksted, JP ;
Hirsch, A .
NATURE MATERIALS, 2002, 1 (03) :190-194
[9]   Composite materials: Tougher ceramics with nanotubes [J].
Peigney, A .
NATURE MATERIALS, 2003, 2 (01) :15-16
[10]  
Riedel R., 2000, Handbook of Ceramic Hard Materials, DOI [10.1002/9783527618217, DOI 10.1002/9783527618217]