Dynamical heat channels

被引:86
作者
Denisov, S [1 ]
Klafter, J [1 ]
Urbakh, M [1 ]
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
D O I
10.1103/PhysRevLett.91.194301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider heat conduction in a 1D dynamical channel. The channel consists of an ensemble of noninteracting particles, which move between two heat baths according to some dynamical process. We show that the essential thermodynamic properties of the heat channel can be obtained from the diffusion properties of the underlying particles. Emphasis is put on the conduction under anomalous diffusion conditions.
引用
收藏
页数:4
相关论文
共 16 条
[1]   Heat conductivity and dynamical instability [J].
Alonso, D ;
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1859-1862
[2]   Polygonal billiards and transport: Diffusion and heat conduction [J].
Alonso, D ;
Ruiz, A ;
de Vega, I .
PHYSICAL REVIEW E, 2002, 66 (06) :15-066131
[3]   Manipulation of dynamical systems by symmetry breaking [J].
Denisov, S ;
Klafter, J ;
Urbakh, M .
PHYSICAL REVIEW E, 2002, 66 (04) :4-046203
[4]   ONSET OF DIFFUSION AND UNIVERSAL SCALING IN CHAOTIC SYSTEMS [J].
GEISEL, T ;
NIERWETBERG, J .
PHYSICAL REVIEW LETTERS, 1982, 48 (01) :7-10
[5]   Mean first passage time for anomalous diffusion [J].
Gitterman, M .
PHYSICAL REVIEW E, 2000, 62 (05) :6065-6070
[6]   DIFFUSION IN DISCRETE NON-LINEAR DYNAMICAL-SYSTEMS [J].
GROSSMANN, S ;
FUJISAKA, H .
PHYSICAL REVIEW A, 1982, 26 (03) :1779-1782
[7]   LEVY STATISTICS IN A HAMILTONIAN SYSTEM [J].
KLAFTER, J ;
ZUMOFEN, G .
PHYSICAL REVIEW E, 1994, 49 (06) :4873-4877
[8]   Beyond Brownian motion [J].
Klafter, J ;
Shlesinger, MF ;
Zumofen, G .
PHYSICS TODAY, 1996, 49 (02) :33-39
[9]  
KRYLOV NS, 1979, WORKS FDN STAT PHYSI
[10]   Thermal conduction in classical low-dimensional lattices [J].
Lepri, S ;
Livi, R ;
Politi, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 377 (01) :1-80