Mean first passage time for anomalous diffusion

被引:95
作者
Gitterman, M [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 05期
关键词
D O I
10.1103/PhysRevE.62.6065
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When the random force acting on a particle diffusing in an interval [0,L] and subjected to a constant external force is a Gaussian white noise, the "Brownian" mean-squared displacement is described by the seminal relation (x(2)) = 2Dt(gamma) with gamma = 1. However, for more complicated random forces the diffusion may be slower (gamma <1, "subdiffusion") or faster (<gamma>>1, "superdiffusion") than the "normal" diffusion. For both these cases we calculated the mean free passage time (MFPT)-the time needed to reach one of the traps at boundaries. The simple formulas for the different diffusive regimes are compared quantitatively for the simplest case of the absence of an external field and for an initial position in the middle of the interval. It turns out that the MFPT's for anomalous diffusion can be both larger or smaller than that for normal diffusion depending on the values of the length of the interval and the diffusion coefficient. Moreover, the MFPT can show nonmonotonic changes with the degree of departure from normal diffusion.
引用
收藏
页码:6065 / 6070
页数:6
相关论文
共 18 条
[1]   ANOMALOUS DIFFUSION IN ONE DIMENSION [J].
BALAKRISHNAN, V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) :569-580
[2]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[3]  
BATEMAN H, 1953, HIGH TRANSCENDENTAL, P35
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]  
Gardiner C. W, 1997, HDB STOCHASTIC METHO
[6]  
Gradstein I. S., 1994, TABLES INTEGRALS SER, V5
[7]   PERCOLATION, STATISTICAL TOPOGRAPHY, AND TRANSPORT IN RANDOM-MEDIA [J].
ISICHENKO, MB .
REVIEWS OF MODERN PHYSICS, 1992, 64 (04) :961-1043
[8]  
Kilbas AA, 1993, Fractional Integral and Derivatives: Theory and Applications
[9]   Boundary value problems for fractional diffusion equations [J].
Metzler, R ;
Klafter, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 278 (1-2) :107-125
[10]   Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach [J].
Metzler, R ;
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (18) :3563-3567