Engineered biosynthesis of novel polyenes:: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis

被引:89
作者
Mendes, MV
Recio, E
Fouces, R
Luiten, R
Martín, JF
Aparicio, JF
机构
[1] INBIOTEC, Inst Biotechnol, Leon 24006, Spain
[2] DSM Antiinfect, NL-2600 MA Delft, Netherlands
[3] Univ Leon, Fac Biol, Area Microbiol, E-24071 Leon, Spain
来源
CHEMISTRY & BIOLOGY | 2001年 / 8卷 / 07期
关键词
cytochrome P450 monooxygenase; epoxidase; pimaricin; polyene; polyketide synthase;
D O I
10.1016/S1074-5521(01)00033-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The post-polyketide synthase biosynthetic tailoring of polyene macrolides usually involves oxidations catalysed by cytochrome P450 monooxygenases (P450s). Although members from this class of enzymes are common in macrolide biosynthetic gene clusters, their specificities vary considerably toward the substrates utilised and the positions of the hydroxyl functions introduced. In addition, some of them may yield epoxide groups. Therefore, the identification of novel macrolide monooxygenases with activities toward alternative substrates, particularly epoxidases, is a Fundamental aspect of the growing field of combinatorial biosynthesis. The specific alteration of these activities should constitute a further source of novel analogues. We investigated this possibility by directed inactivation of one of the P450s belonging to the biosynthetic gene cluster of an archetype polyene, pimaricin. Results: A recombinant mutant of the pimaricin-producing actinomycete Streptomyces natalensis produced a novel pimaricin derivative, 4,5 -deep oxypimaricin, as a major product. This biologically active product resulted from the phage-mediated targeted disruption of the gene pimD, which encodes the cytochrome P450 epoxidase that converts deepoxypimaricin into pimaricin. The 4,5-deepoxypimaricin has been identified by mass spectrometry and nuclear magnetic resonance following highperformance liquid chromatography purification. Conclusions: We have demonstrated that PimD is the epoxidase responsible for the conversion of 4,5-deepoxypimaricin to pimaricin in S. natalensis. The metabolite accumulated by the recombinant mutant, in which the epoxidase has been knocked out, constitutes the first designer polyene obtained by targeted manipulation of a polyene biosynthetic gene cluster. This novel epoxidase could prove to be valuable for the introduction of epoxy substituents into designer macrolides. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:635 / 644
页数:10
相关论文
共 48 条
[1]   A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis [J].
Aparicio, JF ;
Fouces, R ;
Mendes, MV ;
Olivera, N ;
Martín, JF .
CHEMISTRY & BIOLOGY, 2000, 7 (11) :895-905
[2]   Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: Analysis of the enzymatic domains in the modular polyketide synthase [J].
Aparicio, JF ;
Molnar, I ;
Schwecke, T ;
Konig, A ;
Haydock, SF ;
Khaw, LE ;
Staunton, J ;
Leadlay, PF .
GENE, 1996, 169 (01) :9-16
[3]   The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin -: A New polyketide synthase organization encoded by two subclusters separated by functionalization genes [J].
Aparicio, JF ;
Colina, AJ ;
Ceballos, E ;
Martín, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (15) :10133-10139
[4]   Characterization of the macrolide P-450 hydroxylase from Streptomyces venezuelae which converts narbomycin to picromycin [J].
Betlach, MC ;
Kealey, JT ;
Betlach, MC ;
Ashley, GW ;
McDaniel, R .
BIOCHEMISTRY, 1998, 37 (42) :14937-14942
[5]   Engineering of modular polyketide synthases to produce novel polyketides [J].
Carreras, CW ;
Santi, DV .
CURRENT OPINION IN BIOTECHNOLOGY, 1998, 9 (04) :403-411
[6]   RESTRICTION MAPPING OF THE DNA OF THE STREPTOMYCES TEMPERATE PHAGE PHI-C31 AND ITS DERIVATIVES [J].
CHATER, KF ;
BRUTON, CJ ;
SUAREZ, JE .
GENE, 1981, 14 (03) :183-194
[7]   AN UNUSUALLY LARGE MULTIFUNCTIONAL POLYPEPTIDE IN THE ERYTHROMYCIN-PRODUCING POLYKETIDE SYNTHASE OF SACCHAROPOLYSPORA-ERYTHRAEA [J].
CORTES, J ;
HAYDOCK, SF ;
ROBERTS, GA ;
BEVITT, DJ ;
LEADLAY, PF .
NATURE, 1990, 348 (6297) :176-178
[8]   REPOSITIONING OF A DOMAIN IN A MODULAR POLYKETIDE SYNTHASE TO PROMOTE SPECIFIC CHAIN CLEAVAGE [J].
CORTES, J ;
WIESMANN, KEH ;
ROBERTS, GA ;
BROWN, MJB ;
STAUNTON, J ;
LEADLAY, PF .
SCIENCE, 1995, 268 (5216) :1487-1489
[9]   AN ERYTHROMYCIN ANALOG PRODUCED BY REPROGRAMMING OF POLYKETIDE SYNTHESIS [J].
DONADIO, S ;
MCALPINE, JB ;
SHELDON, PJ ;
JACKSON, M ;
KATZ, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (15) :7119-7123
[10]   MODULAR ORGANIZATION OF GENES REQUIRED FOR COMPLEX POLYKETIDE BIOSYNTHESIS [J].
DONADIO, S ;
STAVER, MJ ;
MCALPINE, JB ;
SWANSON, SJ ;
KATZ, L .
SCIENCE, 1991, 252 (5006) :675-679