Statistical condition estimation for linear least squares

被引:26
作者
Kenney, CS [1 ]
Laub, AJ [1 ]
Reese, MS [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
conditioning; sensitivity; linear least squares;
D O I
10.1137/S0895479895291935
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Statistical condition estimation is applied to the linear least squares problem. The method obtains componentwise condition estimates via the Frechet derivative. A rigorous statistical theory exists that determines the probability of accuracy in the estimates. The method is as computationally efficient as normwise condition estimation methods, and it is easily adapted to respect structural constraints on perturbations of the input data. Several examples illustrate the method.
引用
收藏
页码:906 / 923
页数:18
相关论文
共 27 条
[11]  
Golub GH, 1989, MATRIX COMPUTATIONS
[12]   CONDITION ESTIMATES [J].
HAGER, WW .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02) :311-316
[13]   FORTRAN CODES FOR ESTIMATING THE ONE-NORM OF A REAL OR COMPLEX MATRIX, WITH APPLICATIONS TO CONDITION ESTIMATION [J].
HIGHAM, NJ .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (04) :381-396
[14]  
HIGHAM NJ, 1994, HALF CENTURY COMPUTA, P49
[15]  
JOHNSON AR, 1988, APPL MULTIVARIATE ST
[16]   SMALL-SAMPLE STATISTICAL CONDITION ESTIMATES FOR GENERAL MATRIX FUNCTIONS [J].
KENNEY, CS ;
LAUB, AJ .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :36-61
[17]   Statistical condition estimation for linear systems [J].
Kenney, CS ;
Laub, AJ ;
Reese, MS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02) :566-583
[18]  
Lawson C.L., 1974, SOLVING LEAST SQUARE
[20]  
Papoulis A., 1991, PROBABILITY RANDOM V