Nuclear magnetic resonance study of PEO-chitosan based polymer electrolytes

被引:20
作者
Donoso, J. P. [1 ]
Lopes, L. V. S. [1 ]
Pawlicka, A. [2 ]
Fuentes, S. [3 ]
Retuert, P. J. [4 ]
Gonzalez, G. [5 ]
机构
[1] Univ Sao Paulo, IFSC, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, IQSC, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Catolica Norte, Fac Sci, Dept Phys, Antofagasta, Chile
[4] Univ Chile, Fac Math & Phys Sci, Dept Mat Sci, Santiago, Chile
[5] Univ Chile, Fac Sci, Dept Chem, Santiago, Chile
基金
巴西圣保罗研究基金会;
关键词
NMR; polymer electrolyte; organic-inorganic hybrid films; chitosan; composite;
D O I
10.1016/j.electacta.2007.04.101
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This work investigates lithium dynamics in a series of polymer electrolytes formed by poly(ethylene oxide) PEO, chitosan (QO), amino propil siloxane (pAPS) and lithium perchlorate by means of nuclear magnetic resonance techniques. Lithium (Li-7) lineshapes and spin-lattice relaxation times were measured as a function of temperature. The results suggest that the chemical functionality of QO, particularly the amine group, participate in coordinating lithium ion in the composites. The competition between QO and PEO for lithium ions is evident in the binary system. In the ternary electrolyte containing PEO, QO and pAPS, it is observed that the lithium ions can competively interact with the two polymers. The heterogeneity, at a local microscopic scale, is revealed by a temperature-dependent equilibrium of lithium ion concentration between at least two different microphases; one dominated by the interactions with chitosan and the other one with polyether. The data of the ternary electrolyte was analysed by assuming two lithium dynamics, the first one associated to the motion of the lithium ion dissolved in PEO and the second one associated to those complexed by the chitosan. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1455 / 1460
页数:6
相关论文
共 25 条
[1]   Nuclear magnetic resonance study of PEO-based composite polymer electrolytes [J].
Bloise, AC ;
Tambelli, CC ;
Franco, RWA ;
Donoso, JP ;
Magon, CJ ;
Souza, MF ;
Rosario, AV ;
Pereira, EC .
ELECTROCHIMICA ACTA, 2001, 46 (10-11) :1571-1579
[2]   Enhancement of ionic conductivity by the addition of plasticizers in cationic monoconducting polymer electrolytes [J].
Chung, SH ;
Heitjans, P ;
Winter, R ;
Bzaucha, W ;
Florjanczyk, Z ;
Onoda, Y .
SOLID STATE IONICS, 1998, 112 (1-2) :153-159
[3]   A LI-7 NUCLEAR-MAGNETIC-RESONANCE STUDY OF LICF3SO3 COMPLEXED IN POLY(PROPYLENE-GLYCOL) [J].
CHUNG, SH ;
JEFFREY, KR ;
STEVENS, JR .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (03) :1803-1811
[4]   Chitosan: A versatile biopolymer for orthopaedic tissue-engineering [J].
Di Martino, A ;
Sittinger, M ;
Risbud, MV .
BIOMATERIALS, 2005, 26 (30) :5983-5990
[5]   NUCLEAR MAGNETIC-RELAXATION STUDY OF POLY(ETHYLENE OXIDE) LITHIUM SALT BASED ELECTROLYTES [J].
DONOSO, JP ;
BONAGAMBA, TJ ;
PANEPUCCI, HC ;
OLIVEIRA, LN ;
GORECKI, W ;
BERTHIER, C ;
ARMAND, M .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10026-10036
[6]   Chitosan membrane as a template for hydroxyapatite crystal growth in a model dual membrane diffusion system [J].
Ehrlich, H ;
Krajewska, B ;
Hanke, T ;
Born, R ;
Heinemann, S ;
Knieb, C ;
Worch, H .
JOURNAL OF MEMBRANE SCIENCE, 2006, 273 (1-2) :124-128
[7]   Transparent conducting polymer electrolyte by addition of lithium to the molecular complex chitosane-poly(aminopropyl siloxane) [J].
Fuentes, S ;
Retuert, PJ ;
González, G .
ELECTROCHIMICA ACTA, 2003, 48 (14-16) :2015-2019
[8]   Conductivity studies on chitosan/PEO blends with LiTFSI salt [J].
Idris, NH ;
Majid, SR ;
Khiar, ASA ;
Hassan, MF ;
Arof, AK .
IONICS, 2005, 11 (5-6) :375-377
[9]   Conductivity studies of a chitosan-based polymer electrolyte [J].
Khiar, ASA ;
Puteh, R ;
Arof, AK .
PHYSICA B-CONDENSED MATTER, 2006, 373 (01) :23-27
[10]   Nuclear magnetic resonance and conductivity study of hydroxyethylcellulose based polymer gel electrolytes [J].
Lopes, LS ;
Machado, GO ;
Pawlicka, A ;
Donoso, JP .
ELECTROCHIMICA ACTA, 2005, 50 (19) :3978-3984