Printed electrochemical devices using conducting polymers as active materials on flexible substrates

被引:25
作者
Chen, MX [1 ]
机构
[1] Linkoping Univ, Dept Sci & Technol, SE-60174 Norrkoping, Sweden
关键词
ambipolar transistor; conducting polymer; electrochemical transistor; electrochemistry; electrolyte; flexible electronics; poly(3,4-ethylenedioxythiophene) (PEDOT); printed electronics; Schottky diode; tunable device;
D O I
10.1109/JPROC.2005.851532
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports some of our initial works in pursuit of a simple and low-cost method of fabricating all-organic electrochemical diodes, triodes, and transistors on flexible plastic or paper substrates. Conducting polymer poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT: PSS), utilized as an active component, is deposited by spin-coating or printing techniques. The devices are directly fabricated from design without the need for masks, patterns, or dies. The output characteristics of both half-wave and full-wave rectifier circuits from two-terminal diodes show stable performances at frequencies below 5 Hz. In three-terminal tunable triodes, threshold voltage can be tuned in the range between 0.25 and 1.6 V In Jour-terminal transistors, ambipolar operation function can be realized in one single device. I-ON/I-OFF current ratios of 10(3)-10(4) have been achieved in the triode and transistor at operating voltages below 3 V In addition, the device applications in electrochromic displays, logical circuits, as well as the switching speed of the circuits and device stability, are discussed.
引用
收藏
页码:1339 / 1347
页数:9
相关论文
共 61 条
[1]  
Andersson P, 2002, ADV MATER, V14, P1460, DOI 10.1002/1521-4095(20021016)14:20<1460::AID-ADMA1460>3.0.CO
[2]  
2-S
[3]   Conducting polymers in microelectronics [J].
Angelopoulos, M .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2001, 45 (01) :57-75
[4]  
ARMGARTH M, 2004, Patent No. 6806511
[5]   A selective electrochemical approach to carbon nanotube field-effect transistors [J].
Balasubramanian, K ;
Sordan, R ;
Burghard, M ;
Kern, K .
NANO LETTERS, 2004, 4 (05) :827-830
[6]   Anodic overoxidation of polythiophenes in wet acetonitrile electrolytes [J].
Barsch, U ;
Beck, F .
ELECTROCHIMICA ACTA, 1996, 41 (11-12) :1761-1771
[7]   Inkjet printing of polymer thin-film transistor circuits [J].
Burns, SE ;
Cain, P ;
Mills, J ;
Wang, JZ ;
Sirringhaus, H .
MRS BULLETIN, 2003, 28 (11) :829-834
[8]   SOLID-STATE MICROELECTROCHEMISTRY - ELECTRICAL CHARACTERISTICS OF A SOLID-STATE MICROELECTROCHEMICAL TRANSISTOR BASED ON POLY(3-METHYLTHIOPHENE) [J].
CHAO, S ;
WRIGHTON, MS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (07) :2197-2199
[9]   Electric current rectification by an all-organic electrochemical device [J].
Chen, MX ;
Nilsson, D ;
Kugler, T ;
Berggren, M ;
Remonen, T .
APPLIED PHYSICS LETTERS, 2002, 81 (11) :2011-2013
[10]   Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers [J].
Chen, XL ;
Bao, ZN ;
Schön, JH ;
Lovinger, AJ ;
Lin, YY ;
Crone, B ;
Dodabalapur, A ;
Batlogg, B .
APPLIED PHYSICS LETTERS, 2001, 78 (02) :228-230